The unique optical properties of microplastic particles have a significant impact on atmospheric radiative forcing. Based on the generalized multi-particle Mie theory, this paper presents a comparative study of the extinction properties and absorption properties of single-component and mixed aerosol clusters composed of microplastics, dust, and black carbon in different structural forms and particle sizes. The results show that the structure, particle size, mixing arrangement, and orientation of aerosol particles containing microplastics will directly affect their optical properties. As the incident wavelength increases, significant differences are observed in the extinction and absorption cross-sections of microplastic and dust particle chains with different structures, although they exhibit similar trends. However, black carbon particle chains show a distinct variation pattern. In the mixed particle chains with different particle sizes, as the incident wavelength increases, the extinction and absorption cross-sections are significantly larger than those of the particle chains with the same particle size, indicating that the particle size has a remarkable influence on their optical properties. The different mixing forms and orientations of aerosol clusters also significantly affect their extinction and absorption cross-sections. These findings provide a new theoretical perspective for environmental optics and remote sensing monitoring of aerosols.
In this study, we used satellite observations to identify 10 typical dust-loading events over the Indian Himalayas. Next, the aerosol microphysical and optical properties during these identified dust storms are characterized using cotemporal in situ measurements over Mukteshwar, a representative site in Indian Himalayas. Relative to the background values, the mass of coarse particles (size range between 2.5 and 10 mu m) and the extinction coefficient were found to be enhanced by 400% (from 24 +/- 15 to 98 +/- 40 mu g/m3) and 175% (from 89 +/- 57 Mm-1 to 156 +/- 79 Mm-1), respectively, during these premonsoonal dust-loading events. Moreover, based on the air mass trajectory, these dust storms can be categorized into two categories: (a) mineral dust events (MDEs), which involve long-range transported dust plumes traversing through the lower troposphere to reach the Himalayas and (b) polluted dust events (PDEs), which involve short-range transported dust plumes originating from the arid western regions of the Indian subcontinent and traveling within the heavily polluted boundary layer of the Gangetic plains before reaching the Himalayas. Interestingly, compared to the background, the SSA and AAE decrease during PDEs but increase during MDEs. More importantly, we observe a twofold increase in black carbon concentrations and the aerosol absorption coefficient (relative to the background values) during the PDEs with negligible changes during MDEs. Consequently, the aerosol-induced snow albedo reduction (SAR) also doubles during MDEs and PDEs relative to background conditions. Thus, our findings provide robust observational evidence of substantial dust-induced snow and glacier melting over the Himalayas.
Developing bio-based plasticizers not only aids in the reduction of fossil fuel consumption but also presents a lower risk to human health. In this study, a fully biodegradable plasticizer-levulinate malate ethanol lactates (LMEL) was successfully synthesized from L-lactic acid, DL-malic acid, levulinic acid, and ethanol, and was compared with commercially plasticizers (acetyl tributyl citrate (ATBC), dioctyl phthalate (DOP) and di-2-ethylhexyl terephthalate (DOTP)). 40 phr LMEL plasticized polyvinyl chloride (PVC) (40LMEL) yielded a remarkable elongation at break of 526.9%, compared with the pure PVC resin (4.5%), thereby significantly enhancing the flexibility of PVC. Moreover, the optical transparency of 40LMEL samples was found to be equivalent to PVC plasticized with three commercial plasticizers. Most importantly, compared with three commercial plasticizers, 40LMEL exhibited superior resistance to migration and volatility, with mass losses of 1.055% in H2O, 13.601% in n-hexane, 14.636% in ethanol, and 1.496% in activated carbon, respectively. Soil degradation experiments have demonstrated that LMEL can be broken down by microorganisms in the soil into nontoxic aliphatic compounds (e.g., 4-oxo-pentanoic acid, and 4,5,7-trihydroxy 2-octenoic acid, et al.). Collectively, LMEL exhibited better overall performance than three commercial plasticizers. This work provides new options for the design of efficient fully bio-based plasticizers. A high-efficiency fully biobased biodegradable plasticizer was synthesized to improve the flexibility poly(vinyl chloride). image
Heritage buildings are valuable assets that represent national cultural identity. Proper building maintenance is a major issue for preservation, as building monitoring aspects and preventive measures are often only taken after physical damage happens. In the context of Indonesian heritage buildings, high levels of humidity which may cause condensation and soil dampness are often overlooked. Early detection methods are urgently required to effectively detect potential risks of condensation. This study aims to investigate condensation risk for heritage building surfaces by calculating thermal properties (i.e., emissivity, albedo) and Blinn-Phong BRDF values through the integration of thermal imaging and 3D scanning techniques. This approach supports architects and conservators in making informed decisions to protect and maintain cultural heritage structures. The study also highlights gaps in current Indonesian regulations regarding moisture presence and condensation risk detection in heritage buildings.
From the beginning of May 2023 to the end of August 2023, the Northern Hemisphere experienced significant wildfire activity with the most widespread fires occurring in Canada. Forest fires in Canada destroyed more than 15.6 million hectares of forests. These wildfires worsened air quality across the region and other parts of the world. The smoke reached southern Europe by the end of June 2023. To better understand the consequences of such forest fires far from the site of origin, aerosol optical, microphysical and radiative properties were analyzed during this event for southern Europe using data from the Visible Infrared Imaging Radiometer Suite (VIIRS), TROPOspheric Monitoring Instrument (TROPOMI), and Aerosol Robotic Network (AERONET). TROPOMI aerosol index (AI) and the carbon monoxide (CO) product confirm that the smoke originated directly from these forest fires. AERONET data from the El Arenosillo site in southern Spain showed maximum aerosol optical depth (AOD) values on June 27 reached 2.36. Data on Angstrom Exponent (AE), aerosol volume size distribution (VSD), single scattering albedo (SSA), fine mode fraction (FMF), volume particle concentration, effective radius (R Eff ), absorption AOD (AAOD), extinction AE (EAE) and absorption AE (AAE) showed that fine-mode particles with carbonaceous aerosols contribution predominated in the atmosphere above the El Arenosillo site. Direct aerosol radiative forcing (DARF) at the top (DARF TOA ) and bottom of atmosphere (DARF BOA ) were-103.1 and-198.93 Wm-2 , respectively. The atmospheric aerosol radiative forcing (DARF ATM ) was found to be 95.83 Wm-2 and with a heating rate 2.69 K day-1 , which indicates the resulting warming of the atmosphere.
Aerosols affect Earth's climate both directly and indirectly, which is the largest uncertainty in the assessment of radiative forcings affecting anthropogenic climate change. The standard Aerosol Robotic Network (AERONET) aerosol products have been widely used for more than 30 years. Currently, there is strong community interest in the possibility of determining aerosol composition directly from remote sensing observations. This work presents the results of applying such a recently developed approach by Li et al. to extended datasets of the directional sky radiances and spectral aerosol optical depth (AOD) measured by AERONET for the retrievals of aerosol components. First, the validation of aerosol optical properties retrieved by this component approach with AERONET standard products shows good agreement. Then, spatiotemporal variations of the obtained aerosol component concentration are characterized globally, especially the absorbing aerosol species (black carbon, brown carbon, and iron oxides) and scattering aerosol species (organic carbon, quartz, and inorganic salts). Finally, we compared the black carbon (BC) and dust column concentration retrievals to the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), products in several regions of interest (Amazon zone, Desert, and Taklamakan Desert) for new insights on the quantitative assessment of MERRA-2 aerosol composition products (R = 0.60-0.85 for BC; R = 0.75-0.90 for dust). The new value-added and long-term aerosol composition product globally is available online (https://doi.org/10.6084/ m9.figshare.25415239.v1), which provides important measurements for the improvement and optimization of aerosol modeling to enhance estimation of the aerosol radiative forcing. SIGNIFICANCE STATEMENT: In the assessment of climate change, the uncertainty associated with aerosol radiative forcing is the largest one. The purpose of this study is to provide a new value-added and long-term aerosol composition (including absorbing and scattering aerosol species) inversion dataset derived from Aerosol Robotic Network (AERONET) measurements for characterizing their spatiotemporal variations at global scale. We find some new insights on the quantitative assessment of black carbon and dust column concentration products in the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Our results and aerosol composition inversion dataset will provide robust support for the overall improvement and optimization of aerosol modeling to better understand the aerosol radiative forcing.
In this study, we investigated the aerosol radiative forcing (ARF) using ground-based measurements of PM2.5 and black carbon aerosols at a semi-arid, rain shadow location, Solapur in peninsular India. It is observed that aerosols caused a net cooling effect at top of the atmosphere (TOP) indicating that the aerosols reflect more solar radiation back to space than they absorb. At the surface, the aerosols caused a net cooling effect indicating more presence of scattering type aerosols. The resulting ARF of the aerosols was found to be ranging from +38 Wm-2 in monsoon to +53 Wm-2 in pre-monsoon indicating trapping of energy which resulted in a warming of the atmosphere. However, BC -only forcing indicated a significant warming effect at TOP as well as in the atmosphere which showed the potential of the absorbing carbonaceous aerosols. Overall, BC was responsible for 44% and 32% of the composite ARF, even though it formed only 7% and 2% of composite aerosol in the dry and wet periods, respectively. The warming impact of BC aerosols was also manifested in terms of their contribution to aerosol radiative forcing efficiency (ARFE) which was about four times more for BC-only than that for composite aerosols. More atmospheric heating rates were observed during dry periods for composite and BC-only aerosols than during wet period. These findings have important implications for aerosol-cloud-precipitation studies as well as the atmospheric thermodynamics and hydrological cycle over this semi-arid region where the total aerosol load is not significant and rainfall amount is scarce.
It is increasingly recognized that light-absorbing impurities (LAI) deposited on snow and ice affect their albedo and facilitate melting processes leading to various feedback loops, such as the ice albedo feedback mechanism. Black carbon (BC) is often considered the most important LAI, but some areas can be more impacted by high dust emissions. Iceland is one of the most important high latitude sources for the Arctic due to high emissions and the volcanic nature of the dust. We studied optical properties of volcanic dust from Iceland and Chile to understand how it interacts with the Sun's radiation and affects areas of deposition as LAI. Optical properties of dust samples were measured at the laboratory of the Finnish Geospatial Research Institute (FGI) using the latest setup of the FGI's goniospectrometer. We found that, depending on the particle size, the albedo of dry volcanic dust on the visible spectrum is as low as 0.03, similar to that of BC, and the albedo decreases with increasing particle size. Wet dust reduces its albedo by 66% compared to dry sample. This supports the comparability of their albedo reducing effects to BC as LAIs, and highlights their significant role in albedo reduction of snow and ice areas. The potential use of the results from our measurements is diverse, including their use as a ground truth reference for Earth Observation and remote sensing studies, estimating climate change over time, as well as measuring other ecological effects caused by changes in atmospheric composition or land cover.
The study aimed to understand the optical properties of Black Carbon (BC) and radiative forcing over a data deficient Himalayan region focusing on critical zone observatory employing ground-based measurements by Aethalometer for BC and satellite retrieval techniques for optical properties during mid-May-June 2022 and January-May 2023. BC mass concentration ranged from 0.18 to 4.43 mu gm- 3, exhibit a mean of 1.47 +/- 0.83 mu gm- 3 with higher summer concentration (1.51 +/- 0.94 mu gm- 3) than winter (1.39 +/- 0.61 mu gm- 3). The average Absorption & Aring;ngstrom Exponent observed to be significantly higher than unity (1.77 +/- 0.31) over the studied high-altitude Himalayan region, suggesting the dominance of biomass-burning aerosol. Higher aethalometer derived compensation parameter (K) in winter suggesting locally originated BC while, lower K value in summer suggesting aged BC transported from Indo-Gangetic Plains. Optical properties calculated from Optical Properties of Aerosol and Cloud (OPAC) model are used in the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model to calculate the aerosol Direct Radiative Force (DRF). The entire studied period is characterized by the predominance of absorbing aerosols, particularly BC, increasing Aerosol Optical Depth, Asymmetric Parameters and decreasing Single Scattering Albedo, leading to a considerable increase in atmospheric radiative forcing (+0.9 Wm-2, top of atmosphere) and Heating Rate (0.36 KDay- 1). The mean radiative forcing within atmosphere during summer was higher (+14.29 Wm-2) relative to the winter (+12.00 Wm-2), emphasizing the impact of absorbing aerosols on regional warming and potential glacier melting in the Himalayas at a faster rate. Urgent policy consideration for the reduction of absorbing aerosols is highlighted, recognizing the critical roles of Black Carbon in the changing behaviour of Critical Zone observatory. The study's data serve as a valuable resource to understanding and addressing uncertainties in climate models, aiding effective policy implementation for Black Carbon reduction.
Carbonaceous aerosols were collected in the valley city of Baoji city in Northern China in August 2022. The light absorption characteristics and influencing factors of black carbon (BC) and brown carbon (BrC) were analyzed, and their radiative forcing was estimated. The results showed that the light absorption of secondary brown carbon [AbsBrC,sec (370)] was 7.5 +/- 2.4 Mm(-1), which was 2.5 times that of primary brown carbon [AbsBrC,pri (370), 3.0 +/- 1.2 Mm(-1)]. During the study period, the absorption Angstrom exponent (AAE) of aerosol was 1.6, indicating that there was obvious secondary aerosol formation or carbonaceous aerosol aging in the valley city of Baoji. Except for secondary BrC (BrCsec), the light absorption coefficient (Abs) and mass absorption efficiency (MAE) of BC and primary BrC (BrCpri) during the persistent high temperature period (PHT) were higher than those during the normal temperature period (NT) and the precipitation period (PP), which indicated that the light absorption capacity of black carbon and primary brown carbon increased, while the light absorption capacity of secondary brown carbon decreased under persistent high temperature period. Secondary aerosols sulfide (SO42-), nitrate (NO3-) and secondary organic carbon (SOC) are important factors for promoting the light absorption enhancemen of BC and BrCpri and photobleaching of BrCsec during persistent high temperature period. The Principal Component Analysis-Multiple Linear Regression (PCA-MLR) model showed that traffic emissions was the most important source of pollution in Baoji City. Based on this, the secondary source accelerates the aging of BC and BrC, causing changes in light absorption. During PHT, the radiative forcing of BC and BrCpri were enhanced, while the radiative forcing of BrCsec was weakened, but the positive radiative forcing generated by them may aggravate the high-temperature disaster.