To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.
The development of biodegradable and recyclable food packaging materials derived from biomass is a promising solution to mitigate resource depletion and minimize ecological contamination. In this study, lignin nanoparticles (LNPs) were effectively produced from bamboo powder using an eco-friendly recyclable acid hydrotrope (RAH) strategy. A sustainable CA/LNPs nanocomposite film was then designed by incorporating these LNPs into a casein (CA) matrix. The LNPs served as nucleation templates, inducing ordered hydrogen bonding and close packing of the CA chains. The addition of 5 wt% LNPs significantly enhanced the mechanical properties of the film, with tensile strength enhanced to 21.42 MPa (219.7 % improvement) and elastic modulus rising to 354.88 MPa (220.3 % enhancement) compared to pure CA film. Notably, the resultant CA/LNPs nanocomposite film exhibited recyclable recasting characteristics, maintaining a reasonable mechanical strength even after three recasting cycles. The incorporation of LNPs also decreased the water solubility of the pure CA film from 31.65 % to 24.81 % indicating some interactions are taking place, while endowing the film with superior UV-blocking ability, achieving nearly complete absorption in the 200-400 nm range. Moreover, the inherent properties of LNPs imparted improved antibacterial and antioxidant activities to the CA/LNPs nanocomposite film. Owing to its comprehensive properties, the CA/LNPs nanocomposite film effectively extended the storage life of strawberries. A soil burial degradation test confirmed over 100 % mass loss within 45 days, highlighting excellent degradability of the films. Therefore, the simple extraction of LNPs and the easily recovery of p-TsOH provide significant promise and feasibility for extending the developed methodologies in this work to rapidly promote the produced films in fields such as degradable and packaging materials.
Internal erosion induces alterations in the initial microstructure of soils, simultaneously affecting physical, hydraulic, and mechanical properties. The initial soil composition plays a crucial role in governing the initiation and progression of seepage-induced suffusion. This study employs the controlled variable method to develop granular soil models with varying particle size ratios, initial fine particle contents, and coarse particle shapes. Seepage suffusion simulations coupled with microstructural analyses are conducted using the CFD-DEM approach. Results demonstrate that particle size ratio, fine particle content, and coarse particle shape exert distinct influences on cumulative erosion mass, fine particle distribution, contact fabric, and mechanical redundancy at both macroscopic and microscopic scales. This numerical investigation advances the fundamental understanding of internal erosion mechanisms and informs the development of micro-mechanical constitutive models. Furthermore, for binary granular media composed of coarse and fine particles, careful control of the particle size ratio and fine content is recommended when utilizing gap-graded soils in embankment and dam construction to improve structural resilience and resistance to internal erosion.
Mesh-free methods, such as the Smooth Particle Hydrodynamics (SPH) method, have recently been successfully developed to model the entire wetting-induced slope collapse process, such as rainfall-induced landslides, from the onset to complete failure. However, the latest SPH developments still lack an advanced unsaturated constitutive model capable of capturing complex soil behaviour responses to wetting. This limitation reduces their ability to provide detailed insights into the failure processes and to correctly capture the complex behaviours of unsaturated soils. This paper addresses this research gap by incorporating an advanced unsaturated constitutive model for clay and sand (CASM-X) into a recently proposed fully coupled seepage flow-deformation SPH framework to simulate a field-scale wetting-induced slope collapse test. The CASM-X model is based on the unified critical state constitutive model for clay and sand (CASM) and incorporates a void-dependent water retention curve and a modified suction-dependent compression index law, enabling the accurate prediction various unsaturated soil behaviours. The integration of the proposed CASM-X model in the fully coupled flow deformation SPH framework enables the successful prediction of a field-scale wetting-induced slope collapse test, providing insights into slope failure mechanisms from initiation to post-failure responses.
Salinity stress is one of the most detrimental abiotic factors affecting plant development, harming vast swaths of agricultural land worldwide. Silicon is one element that is obviously crucial for the production and health of plants. With the advent of nanotechnology in agricultural sciences, the application of silicon oxide nanoparticles (SiO-NPs) presents a viable strategy to enhance sustainable crop production. The aim of this study was to assess the beneficial effects of SiO-NPs on the morpho-physio-biochemical parameters of rice (Oryza sativa L., variety: DRR Dhan 73) under both normal and saline conditions. To create salt stress during transplanting, 50 mM NaCl was injected through the soil. 200 mM SiO-NPs were sprayed on the leaves 25 days after sowing (DAS). It was evident that salt stress significantly hindered rice growth because of the reductions in shot length (41 %), root length (38 %), shot fresh mass (40 %), root fresh mass (47 %), shoot dry mass (48 %), and root dry mass (39 %), when compared to controls. Together with this growth inhibition, elevated oxidative stress markers including a 78 % increase in malondialdehyde (MDA) and a 67 % increase in hydrogen peroxide (H2O2) indicating enhanced lipid peroxidation were noted. Increasing the chlorophyll content (14 %), photosynthetic rate (11 %), protein levels, total free amino acids (TFAA; 13 %), and total soluble sugars (TSS; 11 %), all help to boost nitrogen (N; 16 %), phosphorous (P; 14 %), potassium (K; 12 %), and vital nutrients. The adverse effects of salt stress were significantly reduced by exogenous application of SiO-NPs. Additionally; SiO-NPs dramatically raised the activity of important antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), improving the plant's ability to scavenge reactive oxygen species (ROS) and thereby lowering oxidative damage brought on by salt. This study highlights SiO-NPs' potential to develop sustainable farming practices and provides significant new insights into how they enhance plant resilience to salinity, particularly in salt-affected regions worldwide.
Agricultural nanotechnology has emerged as an effective tool for enhancing crop yield and agricultural productivity amid the growing world population. Over the past ten years, application of nanoparticles (NPs) as nano fertilizers or bio-stimulants has been grown to enhance the morphological and biochemical parameters of various crops. The growth and development of edible crop is affected by soil iron deficiency, particularly in agricultural land that lacks sustainable management practices. This review evaluates effect of Iron oxide nanoparticles (IONPs) on agricultural plant growth. Iron is a micro-nutrient, which is essential for plants. The uptake of IONPs in plant mainly depends upon the exposure method i.e. foliar spray through leaves, soil treatment through roots and seed priming through pre-soaking of seeds. Their impact can be positive or negative depending on the variable conditions in the environment, application method, duration of exposure, concentration and size of IONPs. Various studies have shown that IONPs had affected the growth, seed germination, yield and quality of plants. Low concentration of IONPs resulted in increased rate of seed germination, plant biomass and photosynthetic pigments while at high concentration it causes toxicity by generating hydroxyl radicals leading to plant damage. This review provides an overview of IONPs effect on plants, seed germination, plant growth and morphology, yield and quality, their application in different plants, photosynthesis and toxicity.
Knowledge Gap: The aggregation of clay minerals-layered silicate nanoparticles-strongly impacts fluid flow, solute migration, and solid mechanics in soils, sediments, and sedimentary rocks. Experimental and computational characterization of clay aggregation is inhibited by the delicate water-mediated nature of clay colloidal interactions and by the range of spatial scales involved, from 1 nm thick platelets to flocs with dimensions up to micrometers or more. Simulations: Using a new coarse-grained molecular dynamics (CGMD) approach, we predicted the microstructure, dynamics, and rheology of hydrated smectite (more precisely, montmorillonite) clay gels containing up to 2,000 clay platelets on length scales up to 0.1 mu m. Simulations investigated the impact of simulation time, platelet diameters (6 to 25 nm), and the ratio of Na to Ca exchangeable cations on the assembly of tactoids (i.e., stacks of parallel clay platelets) and larger aggregates (i.e., assemblages of tactoids). We analyzed structural features including tactoid size and size distribution, basal spacing, counterion distribution in the electrical double layer, clay association modes, and the rheological properties of smectite gels. Findings: Our results demonstrate new potential to characterize and understand clay aggregation in dilute suspensions and gels on a scale of thousands of particles with explicit representation of counterion clouds and with accuracy approaching that of all-atom molecular dynamics (MD) simulations. For example, our simulations predict the strong impact of Na/Ca ratio on clay tactoid formation and the shear-thinning rheology of clay gels.
Macro- and micromechanical interactions between the geogrid and granular aggregates considering particle shape effects are essential for the performance of reinforced soil structures under cyclic normal loading (CNL). Crushed limestone and spherical granular media were mixed to obtain samples with different overall regularities (OR = 0.707, 0.774, 0.841, 0.908, and 0.975). Direct shear tests under CNL were conducted at various overall regularities, normal loading frequencies, and waveforms. Consistent with experiment tests, a discrete-element method (DEM) simulation was performed, incorporating authentic particle shapes obtained through three-dimensional (3D) scanning technology. The results showed that the macroscopic interface shear strength and volume change decreased with an increase in the overall regularity and normal loading frequency. The interface shear strength and deformation under the square waveform are bound to be higher than that under other waveforms. The coordination number, porosity, and fabric anisotropy were used to explain the macroscopic interface shear behavior in relation to the overall regularity. A higher coordination number and stronger contact force were observed with a decrease in the overall regularity. As the overall regularity decreased, the interface integrity and stability became stronger, with the result that the reinforced soil structure can withstand a larger principal stress deflection. Through experimental and DEM analyses, the underlying explanation for the effect of particle shape on the mechanical interaction of reinforced soil was revealed.
Soil cadmium (Cd) contamination threatens plant growth and agricultural productivity. Hibiscus syriacus L., valued for its ornamental, edible, and medicinal properties, is widely cultivated in Cd-contaminated areas of southern China.This study aimed to evaluate the effectiveness of nano-zinc oxide (nZnO) in alleviating Cd toxicity in H. syriacus, examining plant phenotypes, physiological and biochemical responses, root ultrastructure, and the accumulation and distribution of Cd and Zn within the soil-H. syriacus system. Pot experiments included Cd treatment (100 mg/kg) and combined soil or foliar applications of nZnO (50 and 100 mg/L), with plants harvested after 45 days. Compared to Cd treatment alone, the combined application of nZnO significantly increased biomass in roots, stems, and leaves, improved photosynthetic performance, osmotic regulation, and antioxidant levels, and mitigated root cell damage; Cd concentrated mainly in roots, and nZnO reduced root Cd levels by 0.24 %-9.06 %. SEM-EDS observations revealed that Cd predominantly accumulated in the root epidermis and cortex, with Cd stress leading to increased levels and localized aggregation of Cd in the xylem. By contrast, nZnO treatment alleviated this disruption. Leaf application of 50 mg/L nZnO showed the best results. These findings highlight nZnO as a promising nano fertilizer for alleviating Cd stress in plants.
Mosquitoes represent a considerable risk to human health due to their role in transmitting various pathogens responsible for diseases like chikungunya, malaria, dengue, and Japanese encephalitis. There is an immediate necessity to explore innovative biological strategies to combat mosquito-borne illnesses. One promising avenue in current research is the development of bioinsecticides utilizing advanced nanotechnology. Therefore, this study aimed to synthesize silver nanoparticles from the actinobacterial strain Streptomyces anthocyanicus (OR186732), isolated from the Western Ghats in Tamil Nadu, India. The AgNPs were synthesized and then characterized using UV-visible spectroscopy, identifying a prominent absorption peak at 424 nm. The identification of different functional groups within the AgNPs was confirmed through FTIR. The produced AgNPs were shown to be crystalline by XRD analysis. The nanoparticles were characterized using FESEM, HRTEM, and EDX to analyze their morphology, size, and elemental composition. The stability was assessed through Zeta potential measurements, which were measured at -0.2 mV. The synthesized AgNPs showed strong larvicidal effects against Culex quinquefasciatus (LC50 = 2.924 ppm), Aedes aegypti (LC50 = 3.245 ppm), and Anopheles stephensi (LC50 = 3.767 ppm). Furthermore, the AgNPs were observed to significantly increase the levels of antioxidant enzymes such as SOD and GPx at high concentrations. In contrast, levels of detoxifying enzymes such as AChE and GST levels were reduced. Histological analysis of mosquito larvae treated with AgNPs revealed significant damage to the midgut tissues. The research suggests that AgNPs synthesized by Actinobacteria could be an environmentally friendly option for biological mosquito control.