共检索到 3

The abrupt warming events punctuating the Termination 1 (about 11.7-18 ka Before Present, BP) were marked by sharp rises in the concentration of atmospheric methane (CH4). The role of permafrost organic carbon (OC) in these rises is still debated, with studies based on top-down measurements of radiocarbon (14C) content of CH(4 )trapped in ice cores suggesting minimum contributions from old and strongly C-14-depleted permafrost OC. However, organic matter from permafrost can exhibit a continuum of C-14 ages (contemporaneous to >50 ky). Here, we investigate the large-scale permafrost remobilization at the Younger Dryas-Preboreal transition (ca. 11.6 ka BP) using the sedimentary record deposited at the Lena River paleo-outlet (Arctic Ocean) to reflect permafrost destabilization in this vast drainage basin. Terrestrial OC was isolated from sediments and characterized geochemically measuring delta C-13, Delta C-14, and lignin phenol molecular fossils. Results indicate massive remobilization of relatively young (about 2,600 years) permafrost OC from inland Siberia after abrupt warming triggered severe active layer deepening. Methane emissions from this young fraction of permafrost OC contributed to the deglacial CH4 rise. This study stresses that underestimating permafrost complexities may affect our comprehension of the deglacial permafrost OC-climate feedback and helps understand how modern permafrost systems may react to rapid warming events, including enhanced CH4 emissions that would amplify anthropogenic climate change.

2024-10-01 Web of Science

Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), delta C-13, and Delta C-14 signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Delta C-14 age is enhanced by splitting soil sources into shallow and deep pools (mean +/- SD: -228 +/- 211 vs. - 492 +/- 173%) rather than traditional active layer and permafrost pools (-300 +/- 236 vs. -441 +/- 215%) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (similar to 7%) increase in aquatic biomass POM flux with warming would be equivalent to a similar to 30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.

2023-03-13 Web of Science

Permafrost-affected soils of the northern circumpolar region represent 50% of the terrestrial soil organic carbon (SOC) reservoir and are most strongly affected by climatic change. There is growing concern that this vast SOC pool could transition from a net C sink to a source. But so far little is known on how the organic matter (OM) in permafrost soils will respond in a warming future, which is governed by OM composition and possible stabilization mechanisms. To investigate if and how SOC in the active layer and adjacent permafrost is protected against degradation, we employed density fractionation to separate differently stabilized SOM fractions. We studied the quantity and quality of OM in different compartments using elemental analysis, C-13 solid-phase nuclear magnetic resonance (C-13-NMR) spectroscopy, and C-14 analyses. The soil samples were derived from 16 cores from drained thaw lake basins, ranging from 0 to 5500years of age, representing a unique series of developing Arctic soils over time. The normalized SOC stocks ranged between 35.5 and 86.2kgSOCm(-3), with the major amount of SOC located in the active layers. The SOC stock is dominated by large amounts of particulate organic matter (POM), whereas mineral-associated OM especially in older soils is of minor importance on a mass basis. We show that tremendous amounts of over 25kgOC per square meter are stored as presumably easily degradable OM rich in carbohydrates. Only about 10kgOC per square meter is present as presumably more stable, mineral-associated OC. Significant amounts of the easily degradable, carbohydrate-rich OM are preserved in the yet permanently frozen soil below the permafrost table. Forced by global warming, this vast labile OM pool could soon become available for microbial degradation due to the continuous deepening of the annually thawing active layer.

2015-07-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页