共检索到 2

Active layer thickness in extremely cold regions is an indicator of global climate change, but it is also affected by the terrain types. Among the different terrain types typical to cold regions, patterned ground is of interest because it develops over time. Thus, investigating the active layer at different degrees of patterned ground development is required to understand the variability in its distribution. In this study, an electrical resistivity tomography (ERT) survey is conducted at three study sites to investigate the distribution of the active layer according to the degree of patterned ground development. The results of the ERT surveys show that the active layer is thinner, and the patterned ground develops better on an active layer with a small slope and stagnant porewater. Thawing of permafrost may be accelerated around patterned ground. As the ERT survey investigates geological structures without disturbing the target ground, it may be an effective method to monitor geological structures in extremely cold regions and interactions of the active layer with the surrounding conditions.

期刊论文 2023-04-01 DOI: 10.1016/j.coldregions.2022.103734 ISSN: 0165-232X

In response to increasing Arctic temperatures, ice-rich permafrost landscapes are undergoing rapid changes. In permafrost lowlands, polygonal ice wedges are especially prone to degradation. Melting of ice wedges results in deepening troughs and the transition from low-centered to high-centered ice-wedge polygons. This process has important implications for surface hydrology, as the connectivity of such troughs determines the rate of drainage for these lowland landscapes. In this study, we present a comprehensive, modular, and highly automated workflow to extract, to represent, and to analyze remotely sensed ice-wedge polygonal trough networks as a graph (i.e., network structure). With computer vision methods, we efficiently extract the trough locations as well as their geomorphometric information on trough depth and width from high-resolution digital elevation models and link these data within the graph. Further, we present and discuss the benefits of graph analysis algorithms for characterizing the erosional development of such thaw-affected landscapes. Based on our graph analysis, we show how thaw subsidence has progressed between 2009 and 2019 following burning at the Anaktuvuk River fire scar in northern Alaska, USA. We observed a considerable increase in the number of discernible troughs within the study area, while simultaneously the number of disconnected networks decreased from 54 small networks in 2009 to only six considerably larger disconnected networks in 2019. On average, the width of the troughs has increased by 13.86%, while the average depth has slightly decreased by 10.31%. Overall, our new automated approach allows for monitoring ice-wedge dynamics in unprecedented spatial detail, while simultaneously reducing the data to quantifiable geometric measures and spatial relationships.

期刊论文 2021-08-01 DOI: 10.3390/rs13163098
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页