Palsas and peat plateaus occur in various environmental conditions, but their driving environmental factors have not been examined across the Northern Hemisphere with harmonized datasets. Such comparisons can deepen our understanding of these landforms and their response to climate change. We conducted a comparative study between four regions: Hudson Bay, Iceland, Northern Fennoscandia, and Western Siberia by integrating landform observations and geospatial data into a MaxEnt model. Climate and hydrological conditions were identified as primary, yet regionally divergent, factors affecting palsa and peat plateau occurrence. Suitable conditions for these landforms entail specific temperature ranges (500-1500 thawing degree days, 500-4000 freezing degree days), around 300 mm of rainfall, and high soil moisture accumulation potential. Iceland's conditions, in particular, differ due to higher precipitation, a narrower temperature range, and the significance of soil organic carbon content. The annual thermal balance is a critical factor in understanding the occurrence of permafrost peatlands and should be considered when comparing different regions. We conclude that palsas and peat plateaus share similar topographic conditions but occupy varying soil conditions and climatic niches across the Northern Hemisphere. These findings have implications for understanding the climatic sensitivity of permafrost peatlands and identifying potential greenhouse gas emitters.
2025-01-01 Web of ScienceAs the regulator of water and nutrient changes in the active layer after permafrost degradation, root signaling substances affect the plant-soil carbon allocation mechanism under climate warming, which is a key issue in the carbon source/sink balance in permafrost regions. To explore how plant root signaling substances regulate carbon allocation in plants and soils under permafrost degradation, the changes in carbon allocation and root signaling substances in the plants and soils of peatland in different permafrost regions at the time of labeling were studied by in situ C-13 labeling experiments. The results showed that the fixed C-13 of Larix gemlini, Carex schumidtii, and Sphagnum leaves after photosynthesis was affected by permafrost degradation. In regions with more continuous permafrost, the trend of the L. gemlini distribution to underground C-13 is more stable. Environmental stress had little effect on the C-13 accumulation of Vaccinium uliginosum. Nonstructural carbohydrates, osmotic regulatory substances, hormones, and anaerobic metabolites were the main root signaling substances that regulate plant growth in the peatlands of the three permafrost regions. The allocation of carbon to the soil is more susceptible to the indirect and direct effects of climate and environmental changes, and tree roots are more susceptible to environmental changes than other plants in isolated patches of permafrost regions. The physical properties of the soil are affected by climate change, and the allocation of carbon is regulated by hormones and osmotic regulators while resisting anoxia in the sporadic regions of permafrost. Carbon allocation in discontinuous permafrost areas is mainly regulated by root substances, which are easily affected by the physical and chemical properties of the soil. In general, the community composition of peatlands in permafrost areas is highly susceptible to environmental changes in the soil, and the allocation of carbon from the plant to the soil is affected by the degradation of the permafrost.
2024-07-01 Web of SciencePeatlands are major natural carbon pool in terrestrial ecosystems globally and are essential to a variety of fields, including global ecology, hydrology, and ecosystem services. Under the context of climate change, the management and conservation of peatlands has become a topic of international concern. Nevertheless, few studies have yet systematized the overall international dynamics of existing peatland research. In this study, based on an approach integrating bibliometrics and a literature review, we systematically analyzed peatland research from a literature perspective. Alongside traditional bibliometric analyses (e.g., number of publications, research impact, and hot areas), recent top keywords in peatland research were found, including 'oil palm', 'tropical peatland', 'permafrost', and so on. Furthermore, six hot topics of peatland research were identified: (1) peatland development and the impacts and degradations, (2) the history of peatland development and factors of formation, (3) chemical element contaminants in peatlands, (4) tropical peatlands, (5) peat adsorption and its humic acids, and (6) the influence of peatland conservation on the ecosystem. In addition, this review found that the adverse consequences of peatland degradation in the context of climate change merit greater attention, that peatland-mapping techniques suitable for all regions are lacking, that a unified global assessment of carbon stocks in peatlands urgently needs to be established, spanning all countries, and that a reliable system for assessing peatland-ecosystem services needs to be implemented expeditiously. In this study, we argued that enhanced integration in research will bridge knowledge gaps and facilitate the systematic synthesis of peatlands as complex systems, which is an imperative need.
2024-04Some sloping peatlands in northern regions often develop surface microtopographic patterns to maintain their water balance and ecosystem functioning. However, we do not know whether and how spatial patterning would influence the water balance and peat formation of permafrost-affected peatlands in relatively dry regions. Here we used data from the field observations and Unmanned Aerial Vehicle (UAV) survey of a slope peatland at an elevation of around 4800 m in the hinterland of the Qinghai-Tibetan Plateau (QTP) to document and understand the topographic controls of water balance and vegetation growth. Our terrain analysis result shows that the peatland-located on the middle of a hillslope-has a gentle slope of 5.6 degrees +/- 2.5 degrees, while the non-peatland upper has a steep slope of 12 degrees +/- 4.5 degrees. The great upstream catchment area and the presence of shallow impermeable permafrost likely create a saturated condition for peat formation. Our UAV results show obvious spatial patterning of abundant pools and ridges across this peatland, and pool sizes and ridge abundance increase with increasing slopes, suggesting that slope-controlled water flow gradient is the main driver of ridge formation and that ridges is to slow down the runoff. UAV-derived greenness values show a positive relationship with the total pool extent locally (R2 = 0.60) and decrease with increasing distance from the individual pools, suggesting sensitive responses of vegetation growth to surface moisture. Thus, enhanced vegetation growth and likely resultant great peat accumulation immediately around pools potentially further differentiate surface micro-topography, strengthening the pool stability. We conclude that the local slope gradient, surface patterning (pools and ridges) and permafrost interact together to regulate water flow and maintain water balance, which in turn regulate the vegetation growth, peat accumulation and peatland stability. Our study implies that the delicate water balance maintained partly by microtopography is sensitive to climate change-especially potential extreme hydroclimate events-and natural and human-induced disturbances that may modify the surface patterning and weaken the peatland's stability, affecting the carbon sequestration ability of this type of peatlands.
2024-01-01 Web of ScienceIncreased permafrost temperatures have been reported in the circum-Arctic, and widespread degradation of permafrost peatlands has occurred in recent decades. The timing of permafrost aggradation in these ecosystems could have implications for the soil carbon lability upon thawing, and an increased understanding of the permafrost history is therefore needed to better project future carbon feedbacks. In this study, we have conducted high-resolution plant macrofossil and geochemical analyses and accelerator mass spectrometry radiocarbon dating of active layer cores from four permafrost peatlands in northern Sweden and Norway. In the mid-Holocene, all four sites were wet fens, and at least three of them remained permafrost-free until a shift in vegetation toward bog species was recorded around 800 to 400 cal. BP, suggesting permafrost aggradation during the Little Ice Age. At one site, Karlebotn, the plant macrofossil record also indicated a period of dry bog conditions between 3300 and 2900 cal. BP, followed by a rapid shift toward species growing in waterlogged fens or open pools, suggesting that permafrost possibly was present around 3000 cal. BP but thawed and was replaced by thermokarst.
2023-12-31 Web of ScienceThe landscapes in the discontinuous permafrost area of Western Siberia are unique objects for assessing the direct and indirect impact of permafrost on greenhouse gas fluxes. The aim of this study was to identify the influence of permafrost on the CO2 emission at the landscape and local levels. The CO2 emission from the soil surface with the removed vegetation cover was measured by the closed chamber method, with simultaneous measurements of topsoil temperature and moisture and thawing depth in forest, palsa, and bog ecosystems in August 2022. The CO2 emissions from the soils of the forest ecosystems averaged 485 mg CO2 m(-2) h(-1) and was 3-3.5 times higher than those from the peat soils of the palsa mound and adjacent bog (on average, 150 mg CO2 m(-2) h(-1)). The high CO2 emission in the forest was due to the mild soil temperature regime, high root biomass, and good water-air permeability of soils in the absence of permafrost. A considerable warming of bog soils, and the redistribution of CO2 between the elevated palsa and the bog depression with water flows above the permafrost table, equalized the values of CO2 emissions from the palsa and bog soils. Soil moisture was a significant factor of the spatial variability in the CO2 emission at all levels. The temperature affected the CO2 emission only at the sites with a shallow thawing depth.
2023-06-01 Web of ScienceThe greenhouse gas (GHG) balance of boreal peatlands in permafrost regions will be affected by climate change through disturbances such as permafrost thaw and wildfire. Although the future GHG balance of boreal peatlands including ponds is dominated by the exchange of both carbon dioxide (CO2) and methane (CH4), disturbance impacts on fluxes of the potent GHG nitrous oxide (N2O) could contribute to shifts in the net radiative balance. Here, we measured monthly (April to October) fluxes of N2O, CH4, and CO2 from three sites located across the sporadic and discontinuous permafrost zones of western Canada. Undisturbed permafrost peat plateaus acted as N2O sinks (-0.025 mg N2O m(-2) d(-1)), but N2O uptake was lower from burned plateaus (-0.003 mg N2O m(-2) d(-1)) and higher following permafrost thaw in the thermokarst bogs (-0.054 mg N2O m(-2) d(-1)). The thermokarst bogs had below-ambient N2O soil gas concentrations, suggesting that denitrification consumed atmospheric N2O during reduction to dinitrogen. Atmospheric uptake of N2O in peat plateaus and thermokarst bogs increased with soil temperature and soil moisture, suggesting sensitivity of N2O consumption to further climate change. Four of five peatland ponds acted as N2O sinks (-0.018 mg N2O m(-2) d(-1)), with no influence of thermokarst expansion. One pond with high nitrate concentrations had high N2O emissions (0.30 mg N2O m(-2) d(-1)). Overall, our study suggests that the future net radiative balance of boreal peatlands will be dominated by impacts of wildfire and permafrost thaw on CH4 and CO2 fluxes, while the influence from N2O is minor.
2023-04-01 Web of ScienceChanges in soil CO2 and N2O emissions due to climate change and nitrogen input will result in increased levels of atmospheric CO2 and N2O, thereby feeding back into Earth's climate. Understanding the responses of soil carbon and nitrogen emissions mediated by microbe from permafrost peatland to temperature rising is important for modeling the regional carbon and nitrogen balance. This study conducted a laboratory incubation experiment at 15 and 20 degrees C to observe the impact of increasing temperature on soil CO2 and N2O emissions and soil microbial abundances in permafrost peatland. An NH4NO3 solution was added to soil at a concentration of 50 mg N kg(-1) to investigate the effect of nitrogen addition. The results indicated that elevated temperature, available nitrogen, and their combined effects significantly increased CO2 and N2O emissions in permafrost peatland. However, the temperature sensitivities of soil CO2 and N2O emissions were not affected by nitrogen addition. Warming significantly increased the abundances of methanogens, methanotrophs, and nirK-type denitrifiers, and the contents of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas nirS-type denitrifiers, beta-1,4-glucosidase (beta G), cellobiohydrolase (CBH), and acid phosphatase (AP) activities significantly decreased. Nitrogen addition significantly increased soil nirS-type denitrifiers abundances, beta-1,4-N- acetylglucosaminidase (NAG) activities, and ammonia nitrogen and nitrate nitrogen contents, but significantly reduced bacterial, methanogen abundances, CBH, and AP activities. A rising temperature and nitrogen addition had synergistic effects on soil fungal and methanotroph abundances, NAG activities, and DOC and DON contents. Soil CO2 emissions showed a significantly positive correlation with soil fungal abundances, NAG activities, and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions showed positive correlations with soil fungal, methanotroph, and nirK-type denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. These results demonstrate the importance of soil microbes, labile carbon, and nitrogen for regulating soil carbon and nitrogen emissions. The results of this study can assist simulating the effects of global climate change on carbon and nitrogen cycling in permafrost peatlands.
2022-12-13 Web of SciencePermafrost peatlands are a huge carbon pool that is uniquely sensitive to global warming. However, despite the importance of peatlands in global carbon sequestration and biogeochemical cycles, few studies have characterized the distribution characteristics and drivers of soil microbial community structure in forest-peatland ecotones. Here, we investigated the vertical distribution patterns of soil microbial communities in three typical peatlands along an environmental gradient using Illumina high-throughput sequencing. Our findings indicated that bacterial richness and diversity decreased with increasing soil depth in coniferous swamp (LT) and thicket swamp (HT), whereas the opposite trend was observed in a tussock swamp (NT). Additionally, these parameters decreased at 0-20 and 20-40 cm and increased at 40-60 cm along the environmental gradient (LT to NT). Principal coordinate analysis (PCoA) indicated that the soil microbial community structure was more significantly affected by peatland type than soil depth. Actinomycetota, Proteobacteria, Firmicutes, Chloroflexota, Acidobacteriota, and Bacteroidota were the predominant bacterial phyla across all soil samples. Moreover, there were no significant differences in the functional pathways between the three peatlands at each depth, except for amino acid metabolism, membrane transport, cell motility, and signal transduction. Redundancy analysis (RDA) revealed that pH and soil water content were the primary environmental factors influencing the bacterial community structure. Therefore, this study is crucial to accurately forecast potential changes in peatland ecosystems and improve our understanding of the role of peat microbes as carbon pumps in the process of permafrost degradation.
2022-11-01 Web of SciencePermafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.
2022-09-01 Web of Science