共检索到 3

With Arctic amplification, hydrological conditions in Arctic permafrost regions are expected to change substantially, which can have a strong impact on carbon budgets. To date, detailed mechanisms remain highly uncertain due to the lack of continuous observational data. Considering the large carbon storage in these regions, understanding these processes becomes crucial for estimating the future trajectory of global climate change. This study presents findings from 8 years of continuous eddy-covariance measurements of carbon dioxide (CO2) and methane (CH4) fluxes over a wet tussock tundra ecosystem near Chersky in Northeast Siberia, comparing data between a site affected by a long-term drainage disturbance and an undisturbed control site. We observed a significant increasing trend in roughness lengths at both sites, indicating denser and/or taller vegetation; however, the increase at the drained site was more pronounced, highlighting the dominant impact of drainage on vegetation structure. These trends in aboveground biomass contributed to differences in gross primary production (GPP) between the two sites increasing over the years, continuously reducing the negative effect of the drainage disturbance on the sink strength for CO2. In addition, carbon turnover rates at the drained site were enhanced, with ecosystem respiration and GPP consistently higher compared to the control site. Because of the artificially lower water table depth (WTD), CH(4 )emissions at the drained site were almost halved. Furthermore, drainage altered the ecosystem's response to environmental controls. Compared to the control site, the drained site became slightly more sensitive to the global radiation (R-g), resulting in higher CO(2 )uptake under the same levels of R-g. Meanwhile, CH(4 )emissions at the drained site showed a higher correlation with deep soil temperatures. Overall, our findings from this WTD manipulation experiment show that changing hydrological conditions will significantly impact the Arctic ecosystem characteristics, carbon budgets, and ecosystem's response to environmental changes.

期刊论文 2025-07-01 DOI: 10.1111/gcb.70346 ISSN: 1354-1013

Modelling the susceptibility of permafrost slopes to disturbance can identify areas at risk to future disturbance and result in safer infrastructure and resource development in the Arctic. In this study, we use terrain attributes derived from a digital elevation model, an inventory of permafrost slope disturbances known as active-layer detachments (ALDs) and generalised additive modelling to produce a map of permafrost slope disturbance susceptibility for an area on northern Melville Island, in the Canadian High Arctic. By examining terrain variables and their relative importance, we identified factors important for initiating slope disturbance. The model was calibrated and validated using 70 and 30 per cent of a data-set of 760 mapped ALDs, including disturbed and randomised undisturbed samples. The generalised additive model calibrated and validated very well, with areas under the receiver operating characteristic curve of 0.89 and 0.81, respectively, demonstrating its effectiveness at predicting disturbed and undisturbed samples. ALDs were most likely to occur below the marine limit on slope angles between 3 and 10 degrees and in areas with low values of potential incoming solar radiation (north-facing slopes). Copyright (c) 2016 John Wiley & Sons, Ltd.

期刊论文 2017-01-01 DOI: 10.1002/ppp.1900 ISSN: 1045-6740

Permafrost landscapes experience different disturbances and store large amounts of organic matter, which may become a source of greenhouse gases upon permafrost degradation. We analysed the influence of terrain and geomorphic disturbances (e.g. soil creep, active-layer detachment, gullying, thaw slumping, accumulation of fluvial deposits) on soil organic carbon (SOC) and total nitrogen (TN) storage using 11 permafrost cores from Herschel Island, western Canadian Arctic. Our results indicate a strong correlation between SOC storage and the topographic wetness index. Undisturbed sites stored the majority of SOC and TN in the upper 70cm of soil. Sites characterised by mass wasting showed significant SOC depletion and soil compaction, whereas sites characterised by the accumulation of peat and fluvial deposits store SOC and TN along the whole core. We upscaled SOC and TN to estimate total stocks using the ecological units determined from vegetation composition, slope angle and the geomorphic disturbance regime. The ecological units were delineated with a supervised classification based on RapidEye multispectral satellite imagery and slope angle. Mean SOC and TN storage for the uppermost 1m of soil on Herschel Island are 34.8kg C m(-2) and 3.4kgNm(-2), respectively. Copyright (c) 2015 John Wiley & Sons, Ltd.

期刊论文 2017-01-01 DOI: 10.1002/ppp.1881 ISSN: 1045-6740
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页