The Tibetan Plateau (TP) is distributed with large areas of permafrost, which have received increasing attention as the climate warms. Accurately modeling the extent of permafrost and permafrost changes is now an important challenge for climate change research and climate modeling in this region. Uncertainty in land use and land cover (LULC), which is important information characterizing surface conditions, directly affects the accuracy of the simulation of permafrost changes in land surface models. In order to investigate the effect of LULC uncertainty on permafrost simulation, we conducted simulation experiments on the TP using the Community Land Model, version 5 (CLM5) with five high-resolution LULC products in this study. Firstly, we evaluated the simulation results using shallow soil temperature data and deep borehole data at several sites. The results show that the model performs well in simulating shallow soil temperatures and deep soil temperature profiles. The effect of different land use products on the shallow soil temperature and deep soil temperature contours is not obvious due to the small differences in land use products at these sites. Although there is little difference in the simulating results of different land use products when compared to the permafrost distribution map, the differences are noticeable for the simulation of the active layer. Land cover had a greater impact on soil temperature simulations in regions with greater land use inconsistency, such as at the junction of bare soil and grassland in the northwestern part of the TP, as well as in the southeast region with complex topography. The main way in which this effect occurs is that land cover affects the net surface radiation, which in turn causes differences in soil temperature simulations. In addition, we discuss other factors affecting permafrost simulation results and point out that increasing the model plant function types as well as carefully selecting LULC products is one of the most important ways to improve the simulation performance of land-surface models in permafrost regions.
2023-12-01 Web of ScienceNumerical simulation is of great importance to the investigation of changes in frozen ground on large spatial and long temporal scales. Previous studies have focused on the impacts of improvements in the model for the simulation of frozen ground. Here the sensitivities of permafrost simulation to different atmospheric forcing data sets are examined using the Community Land Model, version 4.5 (CLM4.5), in combination with three sets of newly developed and reanalysis-based atmospheric forcing data sets (NOAA Climate Forecast System Reanalysis (CFSR), European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-I), and NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA)). All three simulations were run from 1979 to 2009 at a resolution of 0.5 degrees x 0.5 degrees and validated with what is considered to be the best available permafrost observations (soil temperature, active layer thickness, and permafrost extent). Results show that the use of reanalysis-based atmospheric forcing data set reproduces the variations in soil temperature and active layer thickness but produces evident biases in their climatologies. Overall, the simulations based on the CFSR and ERA-I data sets give more reasonable results than the simulation based on the MERRA data set, particularly for the present-day permafrost extent and the change in active layer thickness. The three simulations produce ranges for the present-day climatology (permafrost area: 11.31-13.57 x 10(6) km(2); active layer thickness: 1.10-1.26 m) and for recent changes (permafrost area: -5.8% to -9.0%; active layer thickness: 9.9%-20.2%). The differences in air temperature increase, snow depth, and permafrost thermal conditions in these simulations contribute to the differences in simulated results.
2017-11-27 Web of Science