Excessive nitrogen fertilization in sweet potato cultivation poses significant ecological and economic challenges in China, negatively impacting soil health by altering microbial community diversity, enzyme activities, and increasing the risk of stem nematode damage. In this study, we conducted a field trial in Northeast China, applying 0-72 kg of urea-N per hectare to brown soil under a five-year sweet potato cropping system. The results demonstrated that optimal nitrogen fertilization (64.8 kg ha-1) significantly promoted beneficial microbial populations, enhanced soil urease activity, and reduced the incidence of stem nematode disease while maintaining high sweet potato yields.
Alterations in snow cover driven by climate change may impact ecosystem functioning, including biogeochemistry and soil (microbial) processes. We elucidated the effects of snow cover manipulation (SCM) on above-and belowground processes in a temperate peatland. In a Swiss mountain-peatland we manipulated snow cover (addition, removal and control), and assessed the effects on Andromeda polifolia root enzyme activity, soil microbial community structure, and leaf tissue and soil biogeochemistry. Reduced snow cover produced warmer soils in our experiment while increased snow cover kept soil temperatures close-to-freezing. SCM had a major influence on the microbial community, and prolonged 'close-to-freezing' temperatures caused a shift in microbial communities toward fungal dominance. Soil temperature largely explained soil microbial structure, while other descriptors such as root enzyme activity and pore-water chemistry interacted less with the soil microbial communities. We envisage that SCM-driven changes in the microbial community composition could lead to substantial changes in trophic fluxes and associated ecosystem processes. Hence, we need to improve our understanding on the impact of frost and freeze-thaw cycles on the microbial food web and its implications for peatland ecosystem processes in a changing climate; in particular for the fate of the sequestered carbon.