共检索到 36

Small organic compounds (SOCs) are widespread environmental pollutants that pose a significant threat to ecosystem health and human well-being. In this study, the FrmA gene from Escherichia coli was overexpressed alone or in combination with FrmB in Arabidopsis thaliana and their resistance to multiple SOCs was investigated. The transgenic plants exhibited varying degrees of increased tolerance to methanol, formic acid, toluene, and phenol, extending beyond the known role of FrmA in formaldehyde metabolism. Biochemical and histochemical analyses showed reduced oxidative damage, especially in the FrmA/BOE lines, as evidenced by lower malondialdehyde (MDA), H2O2 and O-2(center dot-) levels, indicating improved scavenging of reactive oxygen species (ROS). SOC treatment led to significantly higher levels of glutathione (GSH) and, to a lesser extent, ascorbic acid (AsA) in the transgenic plants than in the wild-types. After methanol exposure, GSH levels increased by 95 % and 72 % in the FrmA/BOE and FrmAOE plants, respectively, while showing no significant increase in the wild-type plants. The transgenic plants also maintained higher GSH:GSSG and AsA:DHA ratios, exhibited upregulated glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities, and correspondingly increased gene expression. In addition, the photosynthetic parameters of the transgenic plants were less affected by SOC stress, which represents a significant photosynthetic advantage. These results emphasize the potential of genetically engineered plants for phytoremediation and crop improvement, as they exhibit increased tolerance to multiple hazardous SOCs. This research lays the foundation for sustainable approaches to combat pollution and improve plant resilience in the face of escalating environmental problems.

期刊论文 2025-08-05 DOI: 10.1016/j.jhazmat.2025.138352 ISSN: 0304-3894

Soil cadmium (Cd) contamination threatens plant growth and agricultural productivity. Hibiscus syriacus L., valued for its ornamental, edible, and medicinal properties, is widely cultivated in Cd-contaminated areas of southern China.This study aimed to evaluate the effectiveness of nano-zinc oxide (nZnO) in alleviating Cd toxicity in H. syriacus, examining plant phenotypes, physiological and biochemical responses, root ultrastructure, and the accumulation and distribution of Cd and Zn within the soil-H. syriacus system. Pot experiments included Cd treatment (100 mg/kg) and combined soil or foliar applications of nZnO (50 and 100 mg/L), with plants harvested after 45 days. Compared to Cd treatment alone, the combined application of nZnO significantly increased biomass in roots, stems, and leaves, improved photosynthetic performance, osmotic regulation, and antioxidant levels, and mitigated root cell damage; Cd concentrated mainly in roots, and nZnO reduced root Cd levels by 0.24 %-9.06 %. SEM-EDS observations revealed that Cd predominantly accumulated in the root epidermis and cortex, with Cd stress leading to increased levels and localized aggregation of Cd in the xylem. By contrast, nZnO treatment alleviated this disruption. Leaf application of 50 mg/L nZnO showed the best results. These findings highlight nZnO as a promising nano fertilizer for alleviating Cd stress in plants.

期刊论文 2025-07-05 DOI: 10.1016/j.jhazmat.2025.137920 ISSN: 0304-3894

Heliotropium L. genus belongs to the Boraginaceae family and is represented by approximately 250 species found in the temperate warm regions of the world, and there are 15 species of these species recorded in Turkiye. Heliotropium hirsutissimum Grauer grows in Bulgaria, Greece, N. Africa, Syria, and Turkiye. There is no record showing that H. hirsutissimum is a heat-tolerant plant. However, in our field studies, it was observed that H. hirsutissimum, which is also distributed in Hisaralan Thermal Springs of Sindirgi-Balikesir, Turkiye, grows in the thermal area with extremely high soil temperature (57.6 degrees C (similar to 60 degrees C)). It was thought that it would be useful to investigate the tolerance mechanism of the H. hirsutissimum plant to extremely high temperatures. For this purpose, the plant seeds were obtained from a geothermal area in the thermal spring. Growing plants were exposed to 20, 40, 60, and 80 +/- 5 degrees C soil temperature gradually for 15 days under laboratory conditions. We measured the effect of high soil temperature on some morphological changes, relative water content, thiobarbituric acid reactive substances, cell membrane stability, and hydrogen peroxide analysis to determine stress levels on leaves and roots. Changes in osmolyte compounds, some antioxidant enzyme activities, ascorbate content, and chlorophyll fluorescence and photosynthetic gas exchange parameters were also determined. As a result of the study carried out to determine the stress level, it was observed that there was not much change and it was understood that the plant was tolerant to high soil temperature. In addition, there was a general increase in osmolytes accumulation, antioxidant enzyme activities, and ascorbate level. There was no significant difference in photosynthetic gas exchange and chlorophyll fluorescence parameters of plants grown at different soil temperatures. The high temperature did not negatively impact the photosynthetic yield of H. hirsutissimum because this plant was found to enhance its antioxidant capacity. The increase in antioxidant activity helped reduce oxidative damage and protect the photosynthetic mechanism under high temperature conditions, while the significant increase in the osmolyte level helped maintain the water status and cell membrane integrity of plants, thus enabling them to effectively withstand high soil temperatures.

期刊论文 2025-06-05 DOI: 10.1007/s00709-025-02079-5 ISSN: 0033-183X

Soil salinization threatens sustainable agriculture, necessitating innovative restoration strategies. Suaeda salsa (L.) Pall., a halophyte with exceptional salt tolerance and vivid pigmentation, serves as an ideal model for salinity adaptation. This study integrates physiological and transcriptomic analyses to reveal how high salinity (400 mmolL(-)1 NaCl) upregulates 4,5-DOPA dioxygenase after 30 days of salt stress, promoting betacyanin accumulation to mitigate oxidative damage. Compared to the control, betacyanin content in the 200 mmolL(-)1 and 400 mmolL(-)1 NaCl groups increased to 1.975-fold and 3.675-fold, respectively, while chlorophyll a content decreased by 45.78% and 69.88%, chlorophyll b by 11.45% and 28.24%, and total chlorophyll by 30.28% and 53.06%. This trade-off in pigment allocation highlights the plant's adaptive strategy under salinity stress. The photosynthetic characteristics of S. salsa confirm that its photoprotective mechanisms are significantly enhanced under 400 mmolL(-)1 NaCl. At the molecular level, betacyanin biosynthesis alleviates oxidative stress, while transcriptional regulation of photosystem I (PSI) and photosystem II (PSII) genes-such as PsbY, PsaO, PsbM, and PsbW-partially restores photosynthetic activity. Stabilization of the electron transport chain by upregulated genes like PetA and PetH further enhances photosynthetic resilience. These findings highlight the synergy between betacyanin production and photosynthetic regulation in enhancing salinity resilience, providing insights for soil restoration and salt-tolerant crop breeding.

期刊论文 2025-05-01 DOI: 10.1007/s00425-025-04664-7 ISSN: 0032-0935

The increasing soil pollution has accelerated the implementation of new agricultural regulations that significantly limit the use of synthetic nitrogen (N) fertilizers. Consequently, plants are likely to experience nutrient stress, leading to decreased productivity and potential threats to food security. To address these critical challenges, microbial-based biostimulant (BS) products, which utilize metabolites from microorganisms, offer a sustainable and eco-friendly solution to mitigate plant nutrient stress. This study evaluated the effects of the radicular application of a microbial-based BS containing L-alpha-amino acids on lettuce and pepper crops under two nitrogen regimes: optimal N availability and N stress (NS). Various parameters, including growth, production, soluble proteins, photosynthetic pigment content, and oxidative stress markers, were assessed. Under optimal N conditions, BS application enhanced commercial biomass in lettuce and vegetative biomass in pepper, indicating that BSs can reduce the need for nitrate uptake and endogenous amino acid synthesis, thereby conserving energy for other physiological processes. Despite BS application, NS conditions significantly reduced vegetative and reproductive growth in both species. However, BS treatment in pepper plants increased chloroplast pigments, improving light absorption and photosynthetic efficiency. The reduction in the carotenoid/chlorophyll ratio suggests efficient N allocation to growth and production. Thus, BS application proved effective in mitigating NS in pepper plants, enhancing pepper production, while under optimal conditions, it improved lettuce yield, particularly commercial biomass. These findings underscore the potential of symbiotic microbial-based BSs as a promising tool for sustainable agriculture under reduced N availability.

期刊论文 2025-04-01 DOI: 10.3390/plants14071087 ISSN: 2223-7747

The tomato is among the crops with the most extensive cultivated area and greatest consumption in our nation; nonetheless, secondary salinization of facility soil significantly hinders the sustainable growth of facility agriculture. Melatonin (MT), as an innovative plant growth regulator, is essential in stress responses. This research used a hydroponic setup to replicate saline stress conditions. Different endogenous levels of melatonin (MT) were established by foliar spraying of 100 mu molL-1 MT, the MT synthesis inhibitor p-CPA (100 mu molL-1), and a combination of p-CPA and MT, to investigate the mechanism by which MT mitigates the effects of salt stress on the photosynthetic efficiency of tomato seedlings. Results indicated that after six days of salt stress, the endogenous MT content in tomato seedlings drastically decreased, with declines in the net photosynthetic rate and photosystem performance indices (PItotal and PIabs). The OJIP fluorescence curve exhibited distortion, characterized by anomalous K-band and L-band manifestations. Exogenous MT dramatically enhanced the gene (TrpDC, T5H, SNAcT, and AcSNMT) expression of critical enzymes in MT synthesis, therefore boosting the level of endogenous MT. The application of MT enhanced the photosynthetic parameters. MT treatment decreased the fluorescence intensities of the J-phase and I-phase in the OJIP curve under salt stress, attenuated the irregularities in the K-band and L-band performance, and concurrently enhanced quantum yield and energy partitioning ratios. It specifically elevated phi Po, phi Eo, and psi o, while decreasing phi Do. The therapy enhanced parameters of both the membrane model (ABS/RC, DIo/RC, ETo/RC, and TRo/RC) and leaf model (ABS/CSm, TRo/CSm, ETo/CSm, and DIo/CSm). Conversely, the injection of exogenous p-CPA exacerbated salt stress-related damage to the photosystem of tomato seedlings and diminished the beneficial effects of MT. The findings suggest that exogenous MT mitigates salt stress-induced photoinhibition by (1) modulating endogenous MT concentrations, (2) augmenting PSII reaction center functionality, (3) safeguarding the oxygen-evolving complex (OEC), (4) reinstating PSI redox potential, (5) facilitating photosynthetic electron transport, and (6) optimizing energy absorption and dissipation. As a result, MT markedly enhanced photochemical performance and facilitated development and salt stress resilience in tomato seedlings.

期刊论文 2025-03-01 DOI: 10.3390/plants14050824 ISSN: 2223-7747

The use of plant growth promoting rhizobacteria (PGPRs) to improve crop growth under salt stress is gaining attention in recent years. In this study, we evaluated the potential of Bacillus amyloliquefaciens strain Q1 to mitigate salt stress in barley. Barley seedlings were inoculated without (-) or with (+) Q1 and then subjected to four salt levels (0-320 mM) to assess the changes in plant growth, photosynthetic attributes, ion homeostasis, and antioxidant capacity. Our results revealed that the slight salt stress (80 mM) caused little damage to plant growth and physiological processes of barley seedlings, indicating the potential of barley for crop production in saline soils equal to or less than this salt level. However, the moderate (160 mM)- or severe (320 mM)-level salt stress considerably reduced the plant growth of barley seedlings, because of the inhibition of photosynthetic capacity and disruption of Na+/K+ homeostasis. The inoculation with Q1 notably ameliorated these detrimental effects of salt stress, and its efficacy was more predominant at the severe salt level. Moreover, Q1 significantly enhanced the activities of antioxidant enzymes in barley at the severe salt level, but not at the slight or moderate salt level. Taken together, it is concluded that Q1 has limited promoting effect on barley under the normal growth condition, whereas it is capable to help barley maintain much better growth and performance under salt stress, especially at the severe level. Our study has expanded the list of PGPR resources for sustainable utilization of saline land.

期刊论文 2025-02-01 DOI: 10.1007/s10725-024-01260-9 ISSN: 0167-6903

Rising soil salinity poses significant challenges to Mediterranean viticulture. While some rootstocks effectively reduce salt accumulation in grafted scions, the mechanisms and performance of novel rootstocks remain largely unexplored. This study compared two novel M-series rootstocks (M2, M4) with established commercial rootstocks (1103 Paulsen, R110) to evaluate their physiological responses and salt tolerance under irrigation with varying salinity levels (0, 25, 50, and 75 mM NaCl) over 5 months. Growth parameters, photosynthetic efficiency, chlorophyll content (SPAD), ion homeostasis, and visual symptoms were monitored. Results revealed genotype-specific strategies: 1103 Paulsen exhibited robust photosynthetic efficiency and ion exclusion, maintaining growth and chlorophyll stability; M2 demonstrated superior biomass retention and moderate ion compartmentalization but showed reduced photosynthetic performance at higher salinity levels; R110 displayed effective ion management at moderate salinity but experienced significant growth reduction under severe stress; and M4 was the most sensitive, with severe reductions in growth and ion homeostasis. Organ-specific responses highlighted roots acting as primary ion reservoirs, particularly for sodium and calcium; leaves exhibited high potassium and chloride concentrations, critical for photosynthesis but prone to ionic imbalance under stress; and stems and wood played a buffering role, compartmentalizing excess sodium and minimizing damage to photosynthetic tissues. The reported findings provide valuable insights for rootstock selection and breeding programs, particularly for regions facing increasing soil and water salinization challenges.

期刊论文 2025-02-01 DOI: 10.3390/agronomy15020473

Toxicity due to excess iron can result in oxidative stress, impacting photosynthetic processes, particularly those related to the electron transport chain and CO2 assimilation. The present study investigated how oxidative damage caused by excess iron affects the hydraulic and diffusive traits and the photobiochemistry of two contrasting rice cultivars regarding their iron sensitivity. Two rice cultivars, IRGA 424 (tolerant to excess iron) and IRGA 417 (sensitive to excess iron), in V6 growth stage were submitted to four concentrations of Fe2+ (0.019 control, 2, 4, and 7 mM) in nutrient solution for 8 days. Excess Fe associated with oxidative damage in the roots decreased the leaf water potential and the root xylem sap flow in both cultivars. The tolerant cultivar IRGA 424 exhibited increased photosynthetic efficiency with a longer exposure but did not change carboxylation efficiency and stomatal conductance up to 2 mM of Fe. The sensitive cultivar experienced greater oxidative damage, which may have contributed to decreased quantum yields, specific efficiencies, and energy fluxes of PSII, thereby increasing photoinhibitory processes. Photoprotective mechanisms and antioxidant enzymes were more efficient in the tolerant cultivar IRGA 424 than in the sensitive cultivar with increased Fe concentrations. The sensitivity of rice to excess iron was associated with the inability to prevent oxidative damage in the roots, with constraints in root xylem sap flow, and with limitations in stomatal function and photobiochemical processes. This knowledge could support the development of iron-tolerant rice cultivars, contributing to increased productivity in soils with excess Fe.

期刊论文 2025-01-04 DOI: 10.1007/s40626-024-00356-x ISSN: 2197-0025

A pot-controlled watering approach was employed to reveal the effect of soil water stress on photosynthetic physiology of Paspalum notatum Flugge under special climatic conditions in arid-hot valley region. Four treatments were set up: control (CK), low stress (LS), moderate stress (MS), and high stress (HS). Physiological measurements were taken to assess indices such as absolute plant height, canopy area, leaf area, leaf water content, and leaf water potential. Additionally, photosynthetic parameters were measured, including net photosynthetic rate, intercellular CO2 concentration, stomatal conductance and chlorophyll fluorescence. The results indicate that under water stress, as the duration of stress increases, the growth of Paspalum notatum Flugge was inhibited, the water available in the body of Paspalum notatum Flugge gradually decreased. Photosynthesis was inhibited and PS II reaction center was disrupted to some extent. To improve water retention, Paspalum notatum Flugge initiated self-protective mechanisms, diminishing leaf water potential and enhancing ability to absorb water from the soil. In the meantime, Paspalum notatum Flugge adjusted to adversity by reducing the stomatal aperture to inhibit water loss, lowering Tr, and increasing WUE. The experiment showed that after rehydration, damaged photosynthetic apparatus of Paspalum notatum Flugge retained a certain self-recovery capability. This phenomenon suggests the reversible deactivation of the photosynthetic apparatus in response to water stress.

期刊论文 2025-01-01 DOI: 10.1016/j.dwt.2025.101063 ISSN: 1944-3994
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 跳转
当前展示1-10条  共36条,4页