Menthyl ester of valine (MV) has been developed as a plant defense potentiator to induce pest resistance in crops. In this study, we attempted to establish MV hydrochloride (MV-HCl) in lettuce and tomato crops. When MV-HCl solutions were used to treat soil or leaves of potted tomato and lettuce plants, 1 mu M MV-HCl solution applied to potted plant soil was most effective in increasing the transcript level of defense genes such as pathogenesis-related 1 (PR1). As a result, leaf damage caused by Spodoptera litura and oviposition by Tetranychus urticae were significantly reduced. In addition, MV-HCl-treated plants showed an increased ability to attract Phytoseiulus persimilis, a predatory mite of T. urticae, when they were attacked by T. urticae. Overall, our findings showed that MV-HCl is likely to be effective in promoting not only direct defense by activating defense genes, but also indirect defense mediated by herbivore-induced plant volatiles. Moreover, based on the results of the sustainability of PR1 expression in tomato plants treated with MV-HCl every 3 days, field trials were conducted and showed a 70% reduction in natural leaf damage. Our results suggest a practical approach to promoting organic tomato and lettuce production using this new plant defense potentiator.
Terpenoids, natural compounds released by plants, function to enhance plant defense. The aim of this study was to investigate the effects of terpenoid-enriched essential oils (EOs) on tomato plants. From the application of a highly diluted solution of 11 different EOs to potted tomato soil, our study showed that rose essential oil (REO), rich in beta-citronellol, played a crucial role in activating defense genes in tomato leaves. As a result, leaf damage caused by herbivores, such as Spodoptera litura and Tetranychus urticae, was significantly reduced. In addition, our results were validated in field trials, providing evidence that REO is an effective biostimulant for enhancing plant defense against pests. Notably, the REO solution also had the added benefit of attracting herbivore predators, such as Phytoseiulus persimilis. Our findings suggest a practical approach to promote organic tomato production that encourages environmentally friendly and sustainable practices.