共检索到 2

Acacia hybrid (Acacia mangium Willd. x A. auriculiformis A. Cunn. Ex Benth.) dominates plantation wood production in central Vietnam. Dependence on a single species may increase biological risks. The potential of eucalypt as an alternative was examined by comparing the growth and survival of acacia hybrid and eucalypt hybrid (Eucalyptus urophylla S.T. Blake x E. pellita F. Muell.) clones in Quang Tri province at three planting densities (1333, 1667 and 2222 trees ha-1). The experiment was planted on an eroded shallow soil common in the region. At age 5 years, survival of acacia (74%) was higher than that of eucalypt (67%), a consequence of high mortality from wind damage for one eucalypt clone. Eucalypt was taller by about 2 m, but stem diameters of acacia and eucalypt were very similar. For both taxa, diameter decreased significantly as planting density increased. Across planting densities, mean standing volume was 107 and 108 m3 ha-1 for acacia and eucalyptus, respectively. Linear regressions of stocking at 5 years on volume accounted for over half of the variance in acacia and eucalypt plot volumes, demonstrating the strong effect of stocking on yield. There were similarly strong effects of stocking on stem diameter. Acacia hybrid plantations of nearby small growers had stockings at age 5 years that averaged over 2500 stems ha-1. Growers planted at higher densities and allowed their trees to multi-stem. Their standing volumes at age 5 years ranged from 83 to 102 m3 ha-1. Understanding how to reduce tree mortality would assist growers to choose planting densities and stand management that optimise growth, log diameter classes and net returns.

期刊论文 2024-08-01 DOI: 10.3390/f15081465

With the development of the economy, the contradiction between population, resources, and the environment has become more and more prominent. How to make full use of limited cultivated land resources to increase food production while reducing damage to the environment is an important issue facing agricultural production. Maize plays an essential role in ensuring global food security. Furthermore, planting density is a key agronomic factor affecting maize yield. Although soil organic matter (SOM) is an important indicator of soil fertility. Whether there are different agronomic optimal planting densities of maize under varying SOM contents remains unknown. Furthermore, there is limited understanding on whether optimizing maize planting density based on SOM further improves grain yield and resource use efficiency. Therefore, this study investigates the influence of SOM and planting density on maize grain yield. We also determine the relationship between SOM and agronomic optimal planting density (AOPD) and compare the grain yield, economic benefits, and resource use efficiency of sowing under uniform conventional planting density (SUD) versus optimized planting density based on SOM (SOD). The results showed that AOPD and its corresponding yield increased linearly with the increase in SOM. Compared with SUD, the yield of the two experimental sites under SOD increased by 2.3 % and 5.5 %, respectively, and the economic benefits increased by 0.5 % and 4.9 %, respectively. The average energy use efficiency, energy mass productivity, and energy economic productivity of the two experimental sites under SOD were all higher than those of SUD. These results demonstrate that it is theoretically feasible to optimize maize planting density based on the spatial heterogeneity of SOM. SOD is a potentially sustainable maize production method that can fully utilize the resources of cultivated land to increase grain yield and economic benefits.

期刊论文 2024-01-01 DOI: 10.1016/j.scitotenv.2023.167597 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页