共检索到 10

Microplastics (MPs) have garnered widespread attention as an emerging global contaminant. However, the impacts of MPs on black soil health remain unclear. A meta-analysis of 337 cases from 33 studies was conducted to elucidate the effects of MPs on black soil health. The analysis incorporated 35 indicators, including soil properties, soil enzymes, plant growth, soil animal health, and soil microbial diversity. We investigated the effects of MPs properties, such as particle type, size, concentration, and exposure duration, on soil health. Results showed that MPs led to notable increases in SOM, DOC, available nitrogen by 31.84 %, 14.35 %, and 12.45 %, respectively, while decreasing nitrate nitrogen by 12.89 %. In addition, MPs exposure enhanced soil urease activity by 11.24 % but reduced phosphatase activity by 6.62 %. MPs also diminished microbial alpha-diversity, caused oxidative damage in earthworms, and suppressed plant germination rates. Notably, smaller MPs, higher concentrations, longer exposure periods, and conventional MPs have more detrimental effects on soil health. By applying the entropy weight method combined with the analytical hierarchy process, we quantified the overall impact of MPs on black soil health as a 12.09 % decrease. Our findings underscore the risks of persistent MPs pollution to black soil health.

期刊论文 2025-06-15 DOI: 10.1016/j.jhazmat.2025.137850 ISSN: 0304-3894

Microplastics (MPs) and nanoplastics (NPs), formed through the degradation of larger plastic materials, are emerging pollutants of significant concern. While their impact on aquatic ecosystems is well documented, their effects on terrestrial, especially farm animals remain underexplored. This review assesses the potential threats of MPs and NPs to Bangladesh's livestock sector by analyzing the results of experimental models and environmental studies. In Bangladesh, MPs and NPs have been detected in agricultural soils, air, water bodies, and aquatic organisms, indicating possible entry into animal systems through contaminated feed, water, and inhalation. Once internalized, these particles may trigger oxidative stress, inflammation, and tissue damage, impairing vital biological systems. Documented health consequences include reduced fertility, hematotoxicity, gut microbiota imbalance, gut-brain axis disruption, skeletal disorders, and metabolic dysfunction. Additionally, MPs and NPs can induce genomic changes, including altered gene expression and DNA hypomethylation, intensifying physiological damage and reducing productivity. Therefore, managing plastic contamination is vital in protecting animal health, ensuring food safety, and preserving human well-being around the globe, especially in vulnerable regions like Bangladesh. Given the critical role of livestock and poultry in ensuring food security and public health, the findings highlight an urgent need for comprehensive research and mitigation strategies.

期刊论文 2025-05-12 DOI: 10.3390/ani15101394 ISSN: 2076-2615

Although plastic has many desirable properties and numerous social benefits, it is a serious ecological problem due to massive application and difficult decomposing. Various environmental and anthropogenic impacts indicate that plastic breaks down into small particles that are ubiquitous in the environment. Microplastics (MPs) are detected in oceans and seas, freshwater, wastewater, glaciers, soils, air, sediments, precipitation, plants, animals, humans, food and drinking water worldwide. Traces of MPs have been found even in remote and sparsely populated areas, indicating far-reaching movement through environmental compartments. Inadequate waste management and wastewater treatment is considered the major source of MP pollution. MPs are persistent contaminants that can adversely affect the ecological balance of the environment and may damage the health of living organisms, including humans. This review emphasizes the current global problems of MP pollution. It covers different areas of MPs, which include basic characteristics, interactions with other pollutants, occurrence and impacts in the environment, toxic effects on living organisms, sampling, sample pre-treatment and analytical methodology for the identification and quantification of MPs in different matrices as well as potential reduction and remediation strategies and the possibilities for effective control of MPs in the environment. Various interesting and useful previously published knowledge collected in this review can serve as a valuable foundation for further MP research.

期刊论文 2025-04-07 DOI: 10.3390/app15074057

The EU plastic strategy aims to reduce the environmental impact of the increasing plastic production, by replacing petrochemical-based polymers with biodegradable ones. But this mitigation measure for the plastamination might, in turn, generate bio-based microplastics in environments that are not necessarily safe. Biodegradable and non-biodegradable plastics, polylactic acid (PLA) and polypropylene (PP) respectively, and their leachates were used for testing microplastic (MP) effects on seven marine species from different trophic levels, including bacteria, algae, rotifers, copepods, amphipods and branchiopods. Results highlighted the toxic effects of both MPs for three consumers, but no toxicity for decomposers and primary producers. Leachates did not induce negative effects for five species tested. A dose-dependent toxic effect of both PP and PLA on different life stages of A. franciscana was observed, with more advanced stages being more sensitive to MPs in terms of mortality. Molecular analysis revealed increased mRNA levels of Heat shock proteins in A. franciscana metanauplii and adults, suggesting their role in oxidative stress response, and decreasing in juveniles, indicating potential irreversible damage. These results indicated that PLA and PP might have comparable ecotoxicological impacts, raising concerns about the effectiveness of biodegradable polymers in mitigation plastic pollution. The study also emphasizes the importance of considering different trophic levels, life stages, and feeding strategies when evaluating the toxic effects of MPs from a One Health perspective.

期刊论文 2025-04-05 DOI: 10.1016/j.jhazmat.2025.137179 ISSN: 0304-3894

Agricultural land has long been regarded as a resource for food production, but over time, the effects of climate change have reduced the ability of soil to produce food efficiently. Nowadays, farmers have moved from traditional to modern techniques of farming. Across the globe, plastic mulching has become widely used on farmlands. According to a few studies, the breakdown of plastic mulches releases microplastics (MPs) into the soil. Despite studies reporting the presence of MPs in soils, there are limited studies on the sources and impacts on soil organisms, plant growth, fruits, and human health. This study evaluated research articles collected from the Web of Science to assess the origin of MP in soil and crops and its effects on soil organisms, plants, and humans. It was observed that MPs come from different sources such as waste water, organic fertilizer, irrigation water, sewage, and sludge. Plastic mulching, which can spread across agricultural fields at varying depths, is the dominant source. Furthermore, it was observed that MPs alter crop quality, reduce the leaf count of wheat, and decrease the root length of crops such as maize, water spinach, black gram, and garden cress. MP can decrease the abundance of soil microarthropods and nematodes, damage the intestinal walls of earthworms, and reduce the feeding and excretion of snails. MP causes liver damage, inflammation, respiratory irritation, and immunological issues. Ultimately, these contaminants (MPs) can transfer and have been detected in fruits and vegetables, which pose adverse effects on human health.

期刊论文 2025-03-21 DOI: 10.1007/s10661-025-13874-1 ISSN: 0167-6369

Polymer-coated controlled-release fertilizers (PC-CRFs) are valued for nutrient efficiency, but concerns remain about the long-term impacts of their plastic coatings on soil health. This study investigates the physicochemical characteristics of two commercially available PC-CRFs, type A and B, and their changes during nutrient release. Accelerated nutrient release experiments were conducted for 25 d in ultrapure water (free water) and saturated soil with five wet-dry cycles. Total phosphorus and total nitrogen release were measured, with lower concentrations found in soil column effluent compared to water. Additionally, studying microplastic (MP) release from type A PC-CRFs during nutrient release showed that a significantly greater number of MPs were released in the soil column than in water. The results also indicated a preferential migration of smaller MPs to the deeper layers of the soil column. Microscopic pores and cracks were observed through surface morphology analysis, likely caused by osmotic pressure during nutrient release, potentially contributing to MP generation. Mechanical degradation of the type A PC-CRF microcapsules was assessed through surface wear and shear tests to simulate the forces exerted by soil particles and agricultural machinery. Our results showed that longer surface wear duration increased the number of generated MPs, while higher loading in surface wear experiments resulted in a larger median diameter of the MPs.

期刊论文 2025-03-15 DOI: 10.1016/j.jhazmat.2024.137082 ISSN: 0304-3894

Styrofoams are widely used as floats and are likely to be damaged by burrowing animals in mariculture. However, the fate of fragmented Styrofoams and their interaction with organisms are not clear in coastal environments. In the present study, field investigations were conducted in 14 sites along the coast of China from July 2023 to October 2024. Results showed that Styrofoams were buried by sand or soil at a depth of up to 50-60 cm in patchy and belted distribution patterns. The abundances of Styrofoams in the deep layer of sediments ranged from 94 to 3042 items/kg. The buried Styrofoams were bunched by roots of six plant species in three ways, i.e., wrapping, crossing, and clinging. The abundance of bunched foams ranged from 1 to 495 items/plant. Simulation experiments in the laboratory showed that plant roots could interact with Styrofoams after 14 days of exposure and tended to cross through the gaps of foam materials. Our study indicates that the fragmented Styrofoams coming from mariculture floats could remain in the sediments due to the physical and biological factors, providing new insight into the biogeochemical cycle of plastic debris.

期刊论文 2025-01-13 DOI: 10.1021/acs.estlett.4c00973 ISSN: 2328-8930

Global plastic pollution is one of the serious issues which create a severe environmental damage. Microbial biodegradation is an eco-friendly method to overcome the plastic pollution issue. The aim of this study is to explore microbes from garbage soil to manage the Low-density Polyethylene (LDPE). Active biodegrading microbes were identified by clear zone method using mineral salt medium with LDPE. Genome sequencing has been performed for LDPE-degrading strains and identified as Bacillus subtilis and Streptomyces labedae. The biodegradation of LDPE was carried out by using selected active strains. The analysis of biodegradation process was carried out by extracellular enzyme assay, cell hydrophobicity and viability of cells with elevated pH produced by B.subtilis and S.labedae. The weight loss percentage of polymer sheets by B.subtilis and S.labedae were 80% and 85% respectively. Major deformities and surface modification on the LDPE sheet were evaluated by the formation of cracks and pits on the surface. The functional groups in the treated sheets were observed by using FTIR analysis. The highest reduction in tensile strength was observed. The GC-MS analysis revealed the presence of 30 new compounds during the biodegradation. It evolved CO2 of 5.32 g/l with S. labedae and 4.55 g/l with B.subtilis. Phytotoxicity of LDPE degraded byproduct showed a positive growth rate of 97.8 +/- 0.836% in Trigonella foenum seed. Then the cytotoxicity study revealed that it was non-toxic to L292 cell lines. Both strains have the ability to consume and reduce the LDPE film. These organisms are the promising resources to manage the LDPE and offers an ecofriendly solution to solve global plastic pollution. Hence the achieved research information could be applied at a large scale for degrading various plastic materials.

期刊论文 2024-03-01 DOI: 10.1007/s11756-023-01595-0 ISSN: 0006-3088

Blue carbon has made significant contributions to climate change adaptation and mitigation while assisting in achieving co-benefits such as aquaculture development and coastal restoration, winning international recognition. Climate change mitigation and co-benefits from blue carbon ecosystems are highlighted in the recent Intergovernmental Panel on Climate Change Special Report on Ocean and Cryosphere in a Changing Climate. Its diverse nature has resulted in unprecedented collaboration across disciplines, with conservationists, academics, and politicians working together to achieve common goals such as climate change mitigation and adaptation, which need proper policy regulations, funding, and multi-prong and multi-dimensional strategies to deal with. An overview of blue carbon habitats such as seagrass beds, mangrove forests, and salt marshes, the critical role of blue carbon ecosystems in mitigating plastic/micro-plastic pollution, as well as the utilization of the above-mentioned blue carbon resources for biofuel production, are critically presented in this research. It also highlights the concerns about blue carbon habitats. Identifying and addressing these issues might help preserve and enhance the ocean's ability to store carbon and combat climate change and mitigate plastic/micro-plastic pollution. Checking out their role in carbon sequestration and how they act as the major carbon sinks of the world are integral parts of this study. In light of the global frameworks for blue carbon and the inclusion of microalgae in blue carbon, blue carbon ecosystems must be protected and restored as part of carbon stock conservation efforts and the mitigation of plastic/micro-plastic pollution. When compared to the ecosystem services offered by terrestrial ecosystems, the ecosystem services provided by coastal ecosystems, such as the sequestration of carbon, the production of biofuels, and the remediation of pollution, among other things, are enormous. The primary purpose of this research is to bring awareness to the extensive range of beneficial effects that can be traced back to ecosystems found in coastal environments.

期刊论文 2023-02-01 DOI: 10.3390/su15032682

Microplastics are posing the potential threats to the Earth's environment. Besides, airborne microplastics were calculated to cause positive net radiative forcing recently. Due to the light-absorbing properties, microplastics may have the effects on the snow/ice surface albedos in the cryospheric regions, which may further enhance the cryospheric melting under the rapid global warming and increasing plastic pollutants dropped into the environments. We suggested to urgently hasten the systematic studies on microplastics' effects on the radiative forcing across the cryospheric regions, and evaluated the possible impact on cryospheric melting in the future.

期刊论文 2022-06-01 DOI: http://dx.doi.org/10.1016/j.accre.2022.06.005 ISSN: 1674-9278
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页