共检索到 2

Since the characteristics of plug seedlings affect the effectiveness of automatic transplanting, this study aimed to explore the effect of the addition of biochar into substrates on the growth of plug seedlings before and after transplanting. The physicochemical properties of substrates with 0%, 5%, 10%, 15%, 20%, and 25% biochar addition all met the requirements of seedling cultivation. The growth trend, root systems, and mechanical properties of seedlings before transplanting and the leaf gas exchange parameters of seedlings after transplanting were measured in this study. The results indicated that the seedlings cultivated with 10% biochar added to the substrate achieved the best growth trend and physiological indices, and the root systems under this treatment were also stronger than those of other treatments, while the seedlings cultivated with 25% biochar treatment were the worst, with less than 22.23% of the growth seen in the 10% biochar treatment, and even less than 1.5% of the growth of the seedlings cultivated without biochar treatment. Since the strong root systems could enhance the mechanical properties of seedling pots, the seedling pots cultivated with 10% biochar added into the substrate possessed the best compression resistance properties, with the maximum value of 49.52 N, and could maintain maximum completeness after free-fall impacting, wherein the loss of root and substrate was only 8.22%. The analysis results of seedlings cultivated after impacting proposed that the seedlings with better growth trends and root systems before transplanting could obtain better leaf gas exchange parameters during the flower stage after transplanting, so the seedlings cultivated with 5%similar to 10% biochar added into the substrate grew better after impacting and then transplanting. It was noticed that the seedlings cultivated with appropriate biochar added into the substrate were able to achieve the optimal growth parameters and mechanical properties before and after transplanting, which were better able to meet the requirements of automatic transplanting. Thus, this study can promote the development of automatic transplanting technology to some extent.

期刊论文 2024-11-01 DOI: 10.3390/agriculture14112012

Currently, the simulation parameters for the model of the interaction between the transplanter, the plug seedlings, the soil, and the pot damage mechanism still need to be clarified. The optimization design of the planters and the improvement of planting quality are still urgent issues that need to be solved. In this paper, the simulation parameters of the pot and the soil were calibrated based on the pressure distribution measurement technology. With the actual collision impact force and matrix loss rate as the targets, a four-factor, three-level orthogonal test was designed to obtain the optimal parameters. Through the optimization analysis of the experimental results, it could be concluded that the pot-soil restitution coefficient, the pot-soil static friction coefficient, the pot-soil rolling friction coefficient, and the surface energy were 0.31, 0.88, 0.35, and 1.07 J/m2, respectively. The experimental verification of the optimal parameter combination showed that the relative error of the collision impact force was 1.65% and that the relative error of the matrix loss rate was 2.32%, which verified the model's reliability. Based on the optimal parameters, the movement law of the hole tray seedlings was studied at different positions during the transplanting process. The plug seedlings collided not only with the planter but also with the soil, which led to the breakage and looseness of the pot structure. The relative error between the matrix loss rate of the transplanter inserting soil, the matrix loss rate of the transplanter that did not enter the soil, and the simulated matrix loss rate was less than 10%, which further proved the accuracy of the simulation model.

期刊论文 2024-01-01 DOI: 10.3390/agronomy14010004
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页