共检索到 2

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.Lake systems on Samoylov Island (Lena Delta) in contrast to the Lena River showed high variation in the methane concentration, the abundance and composition of MOB communities and consequently methane oxidation rates.Lake systems on Samoylov Island (Lena Delta) in contrast to the Lena River showed high variation in the methane concentration, the abundance and composition of MOB communities and consequently methane oxidation rates.

期刊论文 2016-08-01 DOI: 10.1093/femsec/fiw116 ISSN: 0168-6496

The melting of permafrost and the associated potential for methane emissions to the atmosphere are major concerns in the context of global warming. However, soils can also represent a significant sink for methane through the activity of methane-oxidizing bacteria (MOB). In this study, we looked at the activity, diversity, and community structure of MOB at two sampling depths within the active layer in three soils from the Canadian high Arctic. These soils had the capacity to oxidize methane at low (15 ppm) and high (1000 ppm) methane concentrations, but rates differed greatly depending on the sampling date, depth, and site. The pmoA gene sequences related to two genotypes of uncultured MOB involved in atmospheric methane oxidation, the 'upland soil cluster gamma' and the 'upland soil cluster alpha', were detected in soils with near neutral and acidic pH, respectively. Other groups of MOB, including Type I methanotrophs and the 'Cluster 1' genotype, were also detected, indicating a broader diversity of MOB than previously reported for Arctic soils. Overall, the results reported here showed that methane oxidation at both low and high methane concentrations occurs in high Arctic soils and revealed that different groups of atmospheric MOB inhabit these soils.

期刊论文 2014-08-01 DOI: 10.1111/1574-6941.12287 ISSN: 0168-6496
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页