共检索到 2

Lignosulfonate (LS), an environmentally friendly and non-toxic material, has attracted attention as a non-traditional soil stabilizer. However, LS could be easily washed out from soil due to its high water-solubility, which leads to the consequent loss of strength. Therefore, an additional admixture is needed to overcome this limitation. In this study, polyethyleneimine (PEI) was mixed with LS to stabilize silica sand. The consequent improvements in the water-resistant and strength characteristics of LS-treated soil were investigated through the unconfined compressive strength (UCS) test, triaxial test, and cyclic wetting- drying tests. The results demonstrated that the UCS had an increasing trend with a rise in LS content. Moreover, the UCS was influenced by the drying out of the water from the specimen related to the LS concentration and the curing time: a higher concentration and a longer curing duration improve the UCS. According to the triaxial test, the deviatoric stress also increased with the LS content. In addition, both the soil's cohesion and secant elastic modulus were improved in a more ductile manner than typical cemented soil. In the cyclic wetting-drying test, no disintegration of the specimen was observed. Although the UCS of the treated soil in wet condition revealed a notable decrease, after re-dry for seven days in a controlled room, its strength recovered to about 86% of that in its initial dry condition.

期刊论文 2024-12-25 DOI: 10.12989/gae.2024.39.6.579 ISSN: 2005-307X

Controlled release of pesticides in response to environmental stimuli using hydrogels as carriers is a feasible approach to improve the effective utilization rates of pesticides. In this regard, modified carboxylated cellulose nanocrystal (CCNC)-based hydrogels with appropriate biocompatibilities and high specific surface areas have broad prospects. Accordingly, in this study, a pH -responsive hydrogel loaded with the pesticide thiamethoxam (TXM) (PEI-CCNC@A-MMT/TXM) was constructed by synergistically introducing CCNC modified with polyethyleneimine (PEI) into cost-effective acidified montmorillonite (A-MMT) via electrostatic self -assembly followed by combination with sodium alginate (SA) by emulsion - gel method via ionic crosslinking. PEI-CCNC@AMMT efficiently improved the mechanical properties of the SA hydrogel and ensured the stability and TXM loading efficiency of this hydrogel; however, the hydrogel stress increased from 9.48 to 41.44 kPa under 20 % compressive strain when the mass ratio of A-MMT to PEI -modified CCNC (PEI-CCNC) was increased from 0 to 0.8. PEI-CCNC@A-MMT/TXM exhibited significant controlled -release characteristics with the change in pH; specifically, with an increase in pH from 5.0 to 9.0, the cumulative release ratio of TXM increased from 53.62 to 94.86 wt % within 48 h of the addition of PEI-CCNC@A-MMT/TXM to the phosphate buffered saline solution. Fitting the six models to the release curves proved that swelling, dissolution, and diffusion acted together during TXM release, and release mechanisms for TXM under different pH conditions were proposed. The release behaviors of PEI-CCNC@A-MMT/TXM in soil indicated that this hydrogel effectively prolonged the release of TXM, and only 91.53 wt % TXM was released within 240 h after the hydrogel entered the soil. The bacterial activity revealed that the hydrogel did not destroy the microbial environment of the soil and demonstrated high biocompatibility. This study provides a promising strategy for regulating the pesticide release behavior, improving pesticide utilization, and reducing environmental pollution of pesticides via introducing low-cost AMMT and green CCNC into the SA hydrogel and applying this hydrogel as a pesticide carrier.

期刊论文 2024-07-05 DOI: 10.1016/j.colsurfa.2024.134009 ISSN: 0927-7757
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页