共检索到 5

In this study, air pollutants were analyzed at a low-industry city on the Silk Road Economic Belt of Northwestern China from 2015 to 2018. The results show that SO2 and CO had a decreasing trend and NO2, O-3, PM2.5, and PM10 had an increasing trend during the study period. The primary characteristic pollutants were PM2.5 and PM10, which were higher than China's Grade II standard. SO2, NO2, CO, PM2.5, and PM10 concentrations showed similar seasonal variation patterns: the highest pollutant concentration was in winter and the lowest in summer. Those pollutants showed a similar diurnal pattern with two peaks, one at 7:00 to 9:00 and another at 21:00 to 22:00. However, O-3 concentration was highest in summer and lowest in winter, with a unimodal diurnal variation pattern. The annual average pollution concentrations in Tianshui in 2017 were substantially lower than the concentrations reported by most cities in China. By examining the meteorological conditions at a daily scale, we found that Tianshui was highly influenced by local emissions and a southwest wind. Potential source contributions and concentration weighted trajectory analyses indicated that the pollution from Gansu, Sichuan, Qinghai, and Shaanxi Province could affect the pollution concentration in Tianshui. The results provide directions for the government to take in formulating regional air pollution prevention and control measures and to improve air quality.

期刊论文 2024-07-01 DOI: http://dx.doi.org/10.3389/feart.2021.527475

Understanding the origins of Tibetan Plateau (TP) glacier dust is vital for glacier dynamics and regional climate understanding. In May 2016, snow pit samples were collected from glaciers on the TP: Qiyi (QY) in the north, Yuzhufeng (YZF) in the center, and Xiaodongkemadi (XDK) in the south. Rare earth element (REE) concentrations were analyzed using inductively coupled plasma mass spectrometry (ICP-MS), and near-surface PM10 concentrations were extracted from a dataset of Chinese near-surface PM10. Two tracing approaches were used: direct REE tracing and an indirect approach combining potential source contribution function (PSCF) and concentration-weighted trajectory (CWT). Both methods yielded consistent results. Pre-monsoon, TP surface soils, Taklimakan Desert, and Qaidam Basin contributed to glacier dust. Notably, central and southern glaciers showed Thar Desert influence, unlike the northern ones. Taklimakan and Thar Deserts were major contributors due to their substantial contribution and high dust concentration. Taklimakan dust, influenced by terrain and westerly winds, affected central and southern glaciers more than northern ones. Westerlies carried Thar Desert dust to the TP after it was uplifted by updrafts in northwest India, significantly affecting southern glaciers. Furthermore, comparing the two tracer methods, the indirect approach combining PSCF and CWT proved more effective for short-term dust source tracing.

期刊论文 2024-05-01 DOI: http://dx.doi.org/10.1007/s11356-023-30081-y ISSN: 0944-1344

Carbonaceous matter (CM) (such as water-insoluble organic carbon (WIOC), black carbon (BC), and water-soluble organic carbon (WSOC)) has a significant impact on the carbon cycle and radiative forcing (RF) of glacier. Precipitation samples and glacier's snow/ice samples (snowpit, surface snow, and granular ice) (Xiao dongkemadi Glacier) were collected at the Dongkemadi River Basin (DRB) in the central Tibetan Plateau (TP) between May and October 2016 to investigate the characteristics and roles of CM in the TP River Basin. WIOC, BC, and WSOC concentrations in precipitation were relatively higher than that in snowpit, but lower than that in surface snow/ice, with the wet deposition fluxes of 0.10 +/- 0.002, 0.04 +/- 0.001, and 0.12 +/- 0.002 g C m(-2) yr(-1) at DRB, respectively. The positive matrix factorization model identified four major sources (biomass burning source, secondary precursors, secondary aerosol, and dust source) of CM in precipitation at DRB. Two source areas (South Asia and the interior of TP) contributing to the pollution at DRB were identified using a potential source contribution function model, a concentration-weighted trajectory method, and the back-trajectory model. Moreover, the light-absorption by WSOC in the ultraviolet region was 23.0%, 12.1%, and 3.4% relative to the estimated total light-absorption in precipitation, snowpit, and surface snow/ice, respectively. Optical indices analysis revealed that WSOC in snowpit samples presented higher molecular weight, while presented higher aromatic and higher molecule sizes in surface snow/ice and precipitation samples, respectively. RF by WSOC relative to that of BC was estimated to be 17.6 +/- 17.6% for precipitation, 10.9 +/- 5.8% for snowpit, and 10.7 +/- 11.6% for surface snow/ice, respectively, during the melt season in the central TP River Basin. These results help us understand how CM affects glaciers, and they can be utilized to create policies and recommendations that efficiently reduce emissions.

期刊论文 2023-01-01 DOI: 10.1016/j.envres.2022.114680 ISSN: 0013-9351

Brown carbon (BrC) is a light-absorbing aerosol component that has a significant impact on atmospheric photochemistry and climate effects. Many studies on light absorbing characteristics of BrC (such as a fraction of water-soluble and/or water-insoluble) have been carried out in cities over the Guanzhong Basin, including radiative forcing, optical properties and sources. However, research on the Qinling Mountains is still lacking. Therefore, PM2.5 samples were collected at the northern piedmont of Qinling Mountains (QL) and Xi'an (XN) in the winter of 2020, and the optical properties and radiation effects of water extracts were analyzed and eval-uated. The mass absorption efficiency (MAE) of water-soluble organic carbon (WSOC) at 365 nm (MAE365) obtained in QL and XN were 0.18 +/- 0.03 m2 g-1 and 0.78 +/- 0.96 m2 g-1, respectively. In the ultraviolet range, the relative light absorption of WSOC relative to elemental carbon (EC) was 6.76% and 33.41% in QL and XN, respectively, and the simple forcing efficiency (SFE280-400) were 0.71 +/- 0.43 and 2.82 +/- 1.71 W g-1 in QL and XN. It may have important effects on the radiation balance of regional climate systems. The chromophores in WSOC of XN and QL are mainly composed of humic-like and protein-like substances, and humus-like substances play a dominant role in two sites (52.61% and 71.13%). Biomass combustion has a limited contribution to chromophore abundance in WSOC of QL, which is more affected by urban transmission. The fluorescence index revealed that the chromophores in WSOC had autogenous characteristics and that the organic matter was mostly newly generated. Furthermore, the molecular weight and aromatic degree in XN samples were higher than that in QL, indicating a greater capacity for light absorption. This work will be instrumental in assessing the inter-action and influence between the city and the northern piedmont of the Qinling Mountains and improve the capability of air pollution prevention and control of Guanzhong Basin.

期刊论文 2023-01-01 DOI: 10.1016/j.atmosres.2022.106499 ISSN: 0169-8095

One year of online total gaseous mercury (TGM) measurements were carried out for the first time in Lanzhou, a city in northwest China that was once seriously polluted. Measurements were made from October 2016 to October 2017 using the Tekran 2537B instrument, and the annual mean concentration of TGM in Lanzhou was 4.48 +/- 2.32 ng m(-3) (mean +/- standard deviation). TGM concentrations decreased during the measurement period, with autumn 2017 average concentrations 2.87 ng m(-3) lower than autumn 2016 average concentrations. Similar diurnal variations of TGM were obtained in different seasons with low concentrations observed in the afternoon and high concentrations at night. The principal component analysis and conditional probability function results revealed that the sources of mercury were similar to the other atmospheric pollutants such as SO2, CO, NO2 and PM2.5, and were mainly from industrial combustion plants in urban districts. Concentration weighted trajectory analysis using backward trajectories demonstrated that higher mercury concentrations were related to air masses from adjacent regions, indicating the importance of influences from local-to-regional scale sources. A synthesis of multi-decadal atmospheric mercury measurements in Lanzhou and other Chinese megacities revealed that atmospheric mercury concentrations were either generally stable or experienced a slight decrease, during a time when China implemented control measures on atmospheric pollution. Long-term atmospheric mercury observations in urban and background sites in China are warranted to assess mercury pollution and the effectiveness of China's mercury control policies. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2020-01-20 DOI: http://dx.doi.org/10.1016/j.scitotenv.2020.137494 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页