BACKGROUNDA major impact of invasive Myocastor coypus in their introduction range is the collapse of riverbanks and nearby infrastructure, such as railway lines, due to the species' burrowing activities. Because widespread implementation of preventive measures along watercourses is unfeasible, identifying susceptible areas is key to guide targeted management actions. This study used species-habitat models to: (i) identify local environmental features of the railway line/watercourse intersections (RLWIs) that make them particularly susceptible to coypu damage, and (ii) predict species occurrence probability over a wide lowland-hilly area of northern Italy (Lombardy) to identify priority areas for monitoring. RESULTSLocal-scale models identified that the RLWIs most susceptible to burrowing were those surrounded by arable land with interspersed hedgerows locally characterized by high herbaceous vegetation and clay soil. In urbanized areas and areas of intensive agriculture, coypu dens were generally located significantly closer to the railway, increasing the risk of collapse. A landscape-scale species distribution model showed that lowland areas along major rivers and lake shores, and also agricultural areas with a dense minor hydrographic network, particularly in the southeast of the study area, are more likely to be occupied by coypu. CONCLUSIONLocal-scale models showed that specific environmental characteristics increase the risk of burrowing near RLWIs. The landscape-scale model allowed us to predict which areas require thorough monitoring of RLWIs to search for such local characteristics to implement preventive management measures. The proposed model-based framework can be applied to any geographical context to predict and prevent coypu damage. (c) 2024 Society of Chemical Industry.
Time-dependent characteristics (TDCs) have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures. In this study, the stress-strain-time characteristics of soft soils were illustrated by consolidation-creep tests based on a typical engineering case. An extended Koppejan model was developed and then embedded in a finite element (FE) model via a user-material subroutine (UMAT). Based on the validated FE model, the time-dependent deformation mechanism of the pile foundation was revealed, and the preventive effect of applying micropiles and stress-release holes to control the deviation was investigated. The results show that the calculated maximum lateral displacement of the cap differs from the measured one by 6.5%, indicating that the derived extended Koppejan model reproduced the deviation process of the bridge cap-pile foundation with time. The additional load acting on the pile side caused by soil lateral deformation was mainly concentrated within the soft soil layer and increased with the increase in load duration. Compared with t = 3 d (where t is surcharge time), the maximum lateral additional pressure acting on Pile 2# increased by approximately 47.0% at t = 224 d. For bridge pile foundation deviation in deep soft soils, stress-release holes can provide better prevention compared to micropiles and are therefore recommended.