Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO2 fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2 uptake to be suppressed by both drivers depending on habitat. CO2 uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO2 source strength. In moist habitats, grubbing decreased GEP and ER by similar to 55%, while warming increased them by similar to 35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO2 uptake and warming led to a twofold increase in late summer CO2 source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO2 sink strength by 70%. One-year CO2-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2 uptake started occurring above similar to 70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO2 uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2 fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.
Ecosystems at the southern edge of the permafrost distribution are highly sensitive to global warming. Changes in soil freeze-thaw cycles can influence vegetation growth in permafrost regions. Extant studies mainly focused on analyzing the differences of vegetation dynamics in different permafrost regions. However, the intrinsic drivers of permafrost degradation on vegetation growth remain elusive yet. Based on the top temperature of permafrost (TTOP) model, we simulated the spatial distribution of permafrost in Northeast China (NEC) from 2001 to 2020. Using the data of the vegetation Net Primary Productivity (NPP), vegetation phenology, climate and permafrost phenology, and analytical methods including partial correlation, multiple linear regression, and path analysis, we explored the response of vegetation growth and phenology to soil freeze-thaw changes and climate change under different degrees of permafrost degradation. Overall, the start date of the growing season (SOS) was very sensitive to the start date of soil thaw (SOT) changes, and multiple regression analyses showed that SOT was the main factor influencing SOS in 41.8% of the NEC region. Climatic factors remain the main factors affecting vegetation NPP in NEC, and the results of partial correlation analysis showed that only 9.7% of the regional duration of soil thaw (DOT) had a strong correlation with vegetation NPP. Therefore, we determined the mechanism responsible for the soil freeze-thaw changes and vegetation growth relationship using the path analysis. The results indicated that there is a potential inhibitory effect of persistent permafrost degradation on vegetation growth. Our findings would contribute to the improvement of process-based models of forest dynamics in the boreal region, which would help to plan sustainable development and conservation strategies in permafrost areas.
Increased soil nutrient availability, and associated increases in vegetation productivity, could create a negative feedback between Arctic ecosystems and the climate system, thereby reducing the contribution of Arctic ecosystems to future climate change. To predict whether this feedback will develop, it is important to understand the environmental controls over nutrient cycling in High Arctic ecosystems and their impact on carbon cycling processes. Here, we examined the environmental controls over soil nitrogen availability in a High Arctic wet sedge meadow and how abiotic factors and soil nitrogen influenced carbon dioxide exchange processes. The importance of environmental variables was consistent over the 3 years, but the magnitudes of their effect varied depending on climate conditions. Ammonium availability was higher in warmer years and wetter conditions, while drier areas within the wetland had higher nitrate availability. Carbon uptake was driven by soil moisture, active layer depth, and variability between sampling sites and years (R2 = 0.753), while ecosystem respiration was influenced by nitrogen availability, soil temperature, active layer depth, and sampling year (R2 = 0.848). Considered together, the future carbon dioxide source or sink potential of high latitude wetlands will largely depend on climate-induced changes in moisture and subsequent impacts on nutrient availability. wetland, climate change
Snow cover is an important control element in the Tibetan Plateau (TP) ecosystem; however, the impact of snow cover changes on gross primary productivity (GPP) is largely unknown, particularly under complex geographical conditions. In this study, we investigated the impacts of snow cover changes on different seasonal GPP and their mechanisms in different geographical zones using multisource remote sensing data from 1982 to 2018. Snow cover significantly affected GPP by nearly 15% of the TP region, and snow cover days (SCDs) were the dominant snow cover indicators affecting GPP variations compared with snow water equivalent (SWE) and snow cover end date (SCED). In general, an increase in snow cover leads to a significant increase in GPP in regions with low precipitation and temperature, but limits the accumulation of GPP in humid and warm regions. Furthermore, from the humid to the arid zone, the moisture effect of snow cover (by altering soil moisture) plays an increasingly important role in regulating GPP variations with increasing drought levels. This study elucidates the importance of snow cover in regulating different seasonal GPP variations and significantly improves our insight into the response of vegetation carbon uptake to snow cover changes in the TP.
Uganda with its fragile ecosystem, large-scale human activities, and increasing population pressure, all of which combined, make this region increasingly susceptible to climate variation. This study examined the long-term trends of annual, seasonal, and monthly distributions of rainfall and temperature from 2001 to 2021 together with crop -wise agricultural productivity. For the analysis, we obtained CHIRPS -V2.0 (Climate Hazards Group InfraRed Precipitation with Station Data version 2.0) rainfall, Moderate Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST), DMSP nighttime lights, ESA land cover attribution, and international crop production assessment records. Subsequently, several non -parametric statistical applications were applied to check the long-term spatio-temporal trends of climate parameters and their inter -relationship at higher significance using the Google Earth Engine platform. The investigation reveals an annual increase in LST, averaging 0.01 degree celsius/year along with decreasing rainfall (1.89 mm/year). However, regional climate trends are largely elevation -dependent, which are predominantly subjected to the northern part of the study area witnessing a slight decrease in LST and thereby increased rainfall. Moreover, the long-term spatial nexus estimation divulges a potent inverse association between rainfall and temperature in the north and northeastern regions of the study area. Concurrently, changing patterns also have led to a decline in crop production and deterioration in water availability, which is accompanied by various other abnormalities, including the scarcity of water resources and anthropogenic activities. Changing climate has had significant implications on crop production, largely on corn and soybean as long-term shifts influence it in average rainfall and temperature, yearly fluctuations, and disturbances during various growth stages.
The rational allocation of the water resources in drylands and the scientific evaluation of their values are important for the regional sustainable development. We estimated the water consumption of each ecosystem in Ejina Oases in the arid area in northwest China based on the water balance equation, then assessed their ecosystem service values (ESVs) using the value per unit area method and the value equivalent factor per unit area method considering the cost of water consumption, respectively, and calculated their water productivities from 1990 to 2015. With the implementation of the ecological water diversion project (EWDP) in 2000, the deciduous broadleaf forest dominated by Populus euphratica had an increasing trend, meanwhile, lakes had a changing process from shrinking and drying up to recovery and expansion from 1990 to 2015. The total water consumption in Ejina Oases decreased from 5.26*10(8) m(3) in 1990 to 4.79*10(8) m(3) in 2000, and then increased continually to 5.97*10(8) m(3) in 2015. The water consumption of forest, grassland and cultivated land hardly changed, while the water consumption of water or wetland changed obviously. The total ESVs estimated using the value per unit area method in Ejina Oases decreased from 1052.6 to 787.3 million yen in the period of 1990-2000, then increased to 1500.6 million yen in 2015, while the ESVs estimated using the value equivalent factor per unit area method decreased from 6368.7 million yen in 1990 to 5892.0 million yen in 2000, then increased to 7139.9 million yen in 2015, and the latter method was more reasonable. The results showed that the EWDP started in 2000 led to the reallocation of water resources and transfer of ESVs among ecosystems, which had obvious performance in the ecological environment and social economy. This study provided a comprehensive view of water use and management, ecological restoration and socio-economic development in this key ecological function zone, and will help decision-makers to formulate the scheme of rational allocation and efficient utilization of water resources in the basin.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.
Reduced precipitation treatments often are used in field experiments to explore the effects of drought on plant productivity and species composition. However, in seasonally snow-covered regions reduced precipitation also reduces snow cover, which can increase soil frost depth, decrease minimum soil temperatures and increase soil freeze-thaw cycles. Therefore, in addition to the effects of reduced precipitation on plants via drought, freezing damage to overwintering plant tissues at or below the soil surface could further affect plant productivity and relative species abundances during the growing season. We examined the effects of both reduced rainfall (via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily grasslands) within the framework of the International Drought Experiment, a coordinated distributed experiment. Plant cover was estimated at the species level, and aboveground biomass was quantified at the functional group level. Among sites, we observed a negative correlation between the snow removal effect on minimum soil temperature and plant biomass production the next growing season. Three sites exhibited significant rain-out shelter effects on plant productivity, but there was no correlation among sites between the rain-out shelter effect on minimum soil moisture and plant biomass. There was no interaction between snow removal and rain-out shelters for plant biomass, although these two factors only exhibited significant effects simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it decreases minimum soil temperatures, can be an important component of the total effect of reduced precipitation on plant productivity.
Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco, GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco, GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco, GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.
Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast Greenland to assess the seasonal response of a dwarf shrub heath, grassland, and fen, to inter-annual variation in snow-cover, soil moisture, and air and soil temperatures. A late snowmelt and start of growing season is counterbalanced by a fast greenup and a tendency to higher peak greenness values. Snow water equivalents and soil moisture explained up to 77% of growing season duration and senescence phase, highlighting thatwater availability is a prominent driver in the heath site, rather than temperatures. We found a significant advance in the start of spring by 10 days and in the end of fall by 11 days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity.