We present the first full-wavelength numerical simulations of the electric field generated by cosmic ray impacts into the Moon. Billions of cosmic rays fall onto the Moon every year. Ultra-high energy cosmic ray impacts produce secondary particle cascades within the regolith and subsequent coherent, wide-bandwidth, linearly-polarized radio pulses by the Askaryan Effect. Observations of the cosmic ray particle shower radio emissions can reveal subsurface structure on the Moon and enable the broad and deep prospecting necessary to confirm or refute the existence of polar ice deposits. Our simulations show that the radio emissions and reflections could reveal ice layers as thin as 10 cm and buried under regolith as deep as 9 m. The Askaryan Effect presents a novel and untapped opportunity for characterizing buried lunar ice at unprecedented depths and spatial scales.
Drainage is a common practice in geotechnical engineering concerning dredged marine soils. Current drainage techniques, including surcharge preloading, vacuum preloading, and combined vacuum-surcharge preloading, have been proven to be effective in soft soil treatment, but are also criticized for their high energy consumption. This paper made a brief review on existing drainage techniques and proposed some prospects for the next-generation techniques in response to the public concern of sustainability. It is found that all conventional preloading techniques have been well studied from tests to modeling, and improved vacuum preloading tends to be used in combination with other techniques. Drainage techniques with lower energy consumption can be realized either by using renewable energy or designing biomimetic devices. The paper is expected to provide a comprehensive while concise report on recent advances in drainage techniques for dredged marine soils and in the meanwhile give an insight into the further development towards a more sustainable future.
PROSPECT is a comprehensive payload package developed by the European Space Agency which will support the extraction and analysis of lunar surface and subsurface samples as well as the acquisition of data from additional environmental sensors. The key elements of PROSPECT are the ProSEED drill and the ProSPA analytical laboratory. ProSEED will support the acquisition of cryogenic samples from depths up to 1 m and deliver them to the ProSPA instrument. ProSPA will receive and seal samples in miniaturized ovens, heat them, physically and chemically process the released volatiles, and analyze the obtained constituents via mass spectrometry using two types of spectrometers. Contextual information will be provided by cameras which will generate multi-spectral images of the drill working area and of acquired samples, and via temperature sensors and a permittivity sensor that are integrated in the drill rod. The package is designed for minimizing volatile loss from the sample between acquisition and analysis. Initially developed for a flight on the Russian Luna-27 mission, the payload package design was adapted for a more generic lander accommodation and will be flown on a lunar polar lander mission developed within the NASA Commercial Lunar Payload Services (CLPS) program. PROSPECT targets science and exploration in lunar areas that might harbor deposits of volatiles, and also supports the demonstration of In-Situ Resource Utilization (ISRU) techniques in the lunar environment. PROSPECT operations are designed to be automated to a significant degree but rely on operator monitoring during critical phases. Here, we report the PROSPECT flight design that will be built, tested, and qualified according to European space technology engineering standards before delivery to the lander provider for spacecraft integration. The package is currently in the hardware manufacturing and integration phase with a target delivery to the NASA-selected CLPS lander provider in 2025.
With the implementation of the Chang'E-5 mission in 2020,the three phases of China lunar exploration program,namely orbiting,landing and returning,have been completed.Next,the International Lunar Research Station (ILRS)will be established at the lunar south pole by 2030,and a lunar base will be planned later.It is a new era of exploitation and utilization of the Moon,in which a vast tasks should be completed.In this paper,we summarized some important progresses of investigation of lunar resources in the past,including lunar resource exploration,analysis of lunar volatiles,mineral extraction,and material construction by 3D printing of lunar regolith.Then,we proposed future tasks for the exploitation of the lunar resources.The main challenges of the Moon,such as the extreme lunar environment,unique properties of lunar regolith,and autonomous control of the process,were considered.The views in this paper can be referenced for future scientific researches and engineering tasks in the field.
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions. Due to the unique marine depositional environment of coral sandy soils, the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities. This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades. The focus of coverage includes the contractive-dilative behavior, the pattern of excess pore-water pressure (EPWP) generation and the liquefaction mechanism and liquefaction resistance, the small-strain shear modulus and strain-dependent shear modulus and damping, the cyclic softening feature, and the anisotropic characteristics of undrained responses of saturated coral sandy soils. In particular, the advances made in the past decades are reviewed from the following aspects: (1) the characterization of factors that impact the mechanism and patterns of EPWP build-up; (2) the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient; (3) the establishment of the invariable form of strain-based, stress-based, or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction; (4) the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus; and (5) the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics. Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.
With the expansion of engineering activities, numerous major projects are gradually emerging in frozen soil regions. However, due to the unique engineering properties of frozen soil, various frozen soil engineering di-sasters have occurred or accelerated under the conditions of global warming, posing a serious threat to the project operation, environmental and ecological protection, and humanity development. This paper summarizes the formation conditions of frozen soil engineering disasters from the perspectives of thermal, hydraulic, and mechanical factors based on existing research. The definition, development trend and characteristics of thawing disaster, frost heaving disaster and freeze-thaw disaster are generalized. The main prevention measures are summarized based on the thermal, hydraulic, and mechanical conditions that cause frozen soil engineering di-sasters. Research suggestions on frozen soil engineering disasters including the engineering disaster mechanism under the frozen soil degradation and multi-hazard risk assessment are proposed. It may provide some references for the harmonious coexistence and sustainable development of engineering construction and geological envi-ronment in frozen soil area.
In preparation for the upcoming Luna 27 mission to the south polar region of the Moon, the Package for Resource Observation and in-Situ Prospecting for Exploration Commercial exploitation and Transportation (PROSPECT) is undergoing a series of tests to ensure its suitability for polar regolith and volatile analysis. A lunar regolith simulant, NU-LHT-2M, was used for geotechnical validation and volatile extraction testing. Therefore, the physical, chemical/mineralogical, and spectral properties of separate batches of this simulant have been characterised to better understand the results of the instrument laboratory testing phase. Here we compare measurements from two different batches of the simulant to Apollo bulk regolith samples in order to understand the suitability and representativeness of the simulant to the properties of surface highlands regolith. Based on our measurements, we recommend that the physical, mineralogical, and spectral properties of simulants be analysed both before and after space instrument testing campaigns. These bookended measurements would allow for a more detailed understanding of the test phase, including: how the simulants have been altered by the test and, therefore, how the lunar surface may be affected by mission extraction and sampling processes.
The prospect of precipitation is of great significance to the distribution of industry and agriculture in Northwest China. The cycle characteristics of temperature and precipitation in the Qilian Mountains were identified by complex Morlet wavelet analysis and were simulated with sine functions. The results indicate that the main cycle of 200 years modulates the variations of temperature and precipitation over the past 2000 years and that cycle simulations fluctuate around the long-term trend. The temperature in the Qilian Mountains exhibits an obvious upward trend during the period 1570-1990 AD, while the precipitation trend shows a slight increase. The wet-island moisture pattern of the Qilian Mountains may be responsible for this. The moisture of the Qilian Mountains is principally sourced from the evapotranspiration of adjacent arid and semi-arid areas and is controlled by regional climate. The precipitation is close to the relative maximum and is at the positive phase of main cycle. It may not be beyond 400 mm in the next 200-year cycle, and the increment of precipitation might result from regional climate change.
NASA's Resource Prospector (RP) was intended to characterize the three dimensional volatile distribution near, and in, a permanently shadowed region on the moon: During May 2016 several RP hardware components were placed in a cryo-vacuum facility at NASA Glenn Research Center along with lunar simulant soil tubes prepared with varying amounts of water. The objective was simulation of observations during drilling activities on the lunar surface and assessing effectiVe delivery of soil samples for capture and sealing. Here we report the spectral measurements (similar to 1600-3400 nm) obtained by one RP instrument while actively drilling. Spectral parameters related to two water ice spectral features near 2000 and 3000 nm were used to monitor the presence of water ice in real-time during drilling. Both parameters provide responses to the drilling activities as soil cuttings are emplaced on the surface and additionally document the sublimation of the ice from the cuttings. Qualitatively, the relative intensities of these parameters as a function of drill depth mimic post-test determinations of the soil water content. These results build confidence that the spectral data can provide information about volatile content in sub-surface materials as it is emplaced onto the surface on a time scale that can be used for real-time decision making regarding delivery of a sample to other analytical devices for more detailed characterization. (C) 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
In-Situ Resource Utilization (ISRU) is a key NASA initiative to exploit resources at the site of planetary exploration for mission-critical consumables, propellants, and other supplies. The Resource Prospector mission, part of ISRU, is scheduled to launch in 2020 and will include a rover and lander hosting the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload for extracting and analyzing lunar resources, particularly low molecular weight volatiles for fuel, air, and water. RESOLVE contains the Lunar Advanced Volatile Analysis (LAVA) subsystem with a Gas Chromatograph-Mass Spectrometer (GC-MS). RESOLVE subsystems, including the RP'15 rover and LAVA, are in NASA's Engineering Test Unit (ETU) phase to assure that all vital components of the payload are space-flight rated and will perform as expected during the mission. Integration and testing of LAVA mass spectrometry verified reproducibility and accuracy of the candidate MS for detecting nitrogen, oxygen, and carbon dioxide. The RP'15 testing comprised volatile analysis of water-doped simulant regolith to enhance integration of the RESOLVE payload with the rover. Multiple tests show the efficacy of the GC to detect 2% and 5% water-doped samples.