共检索到 4

Natural rubber (NR) is a material with a wide range of industrial and commercial applications, including agriculture, defense, transportation, and domestic use. However, the mechanical properties of natural rubber treated by traditional acid coagulation are limited, which restricts its application in high-end products. Furthermore, the wastewater generated also causes soil acidification. Consequently, there is a necessity to investigate new coagulation methods to enhance the comprehensive performance of natural rubber and reduce environmental pollution. In this work, a novel method for the preparation of environmentally friendly high-performance natural rubber by alkaline protease/calcium chloride coagulation of natural rubber (AC-NR) is reported. The research demonstrates that the products of protein cleavage by alkaline protease together with calcium ions can greatly enhance the cross-linking between rubber particles, form the network structure of natural rubber well. Furthermore, increasing the pH at the isoelectric point of the discharged wastewater reduces the impact on soil acidification. In comparison with those from conventional acid coagulation of natural rubber (A-NR), the tensile strength of AC-NR was increased by 7.9 MPa, the tear strength was increased by 5.3 kN/m, the final temperature rise was lowered by 6.5 degrees C, and abrasion performance was improved. This study demonstrates that by utilizing the collaborative impact of alkaline protease and calcium chloride on the rubber molecular chain during the coagulation process of natural rubber, environmentally friendly high-performance natural rubber with excellent mechanical properties and reduced environmental pollution can be prepared without the necessity for chemical modification or cumbersome processes, which is conducive to the green development and high-quality pursuit of NR materials.

期刊论文 2025-02-01 DOI: 10.3390/polym17040490

In this study, proteolytic bacteria, particularly Pseudomonas aeruginosa strain SM4 (OQ349573), were isolated from tannery solid waste dumping yard soil and employed to produce extracellular protease enzymes. The bacteria exhibited optimal growth after 30 h of incubation at 37 degrees C and pH 7. Under conditions of 55 degrees C, pH 8, and a substrate concentration of 2 %, the crude enzyme displayed its highest activity at 105 UmL-1. Notably, the produced crude enzyme showed no discernible inhibitory effects on detergents, metal salts, or organic solvents. Application of the crude protease at concentrations of 3 % and 2 % in chrome tanning of goatskins (GS) and cowhides (CH), respectively, yielded significant reductions of 35 % and 30 % in chromium and other posttanning chemicals compared to conventional processes. Despite the 30 to 35 % reduction in tanning and posttanning chemicals, the uptake of chrome and associated chemicals by crust leather was higher than observed in conventional processes. Chromium content analysis of the effluent revealed an 81 % reduction during piloting in real industrial operations, accompanied by reductions of about 46 % in BOD and COD pollution loads. The finished leather obtained from the enzymatic process exhibited superior mechanical properties, including higher tensile strengths (210 and 195 kg cm-2), stitch tear (92 and 165 kg cm-1), grain crack load (28 and 32 kg), and distension (73 and 62 mm) for GS and CH, respectively, surpassing or closely aligning with standard values and those obtained in conventional processes.

期刊论文 2024-05-01 DOI: 10.1016/j.ijbiomac.2024.131858 ISSN: 0141-8130

Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic defense proteins of higher fungi. Many of these potentially interesting proteins are protease inhibitors, and some have been shown to adversely affect insects. We examined the effects of the cysteine protease inhibitors macrocypin 1, 3, and 4 from Macrolepiota procera, clitocypin from Clitocybe nebularis, and cocaprin 1 and the serine protease inhibitor cospin 1 from Coprinopsis cinerea on D. v. virgifera. We confirmed the inhibition by mycocypins of the cysteine catalytic-type proteolytic activities in gut extracts of larvae and adults. The inhibition of pGlu-Phe-Leu-hydrolyzing activity was stronger than that of Z-Phe-Arg-hydrolyzing activity. Mycocypins and cospin resisted long-term proteolytic digestion, whereas cocaprin 1 was digested. Bioassays with overlaid artificial diet revealed no effects of proteins on neonatal mortality or stunting, and no effects on adult mortality. Immersion of eggs in protein solutions had little effect on egg hatching or mortality of hatching neonates. Microscopic analysis of the peritrophic matrix and apical surface of the midguts revealed the similarity between larvae of D. v. virgifera and the chrysomelid Leptinotarsa decemlineata, which are sensitive to these inhibitors. The resistance of D. v. virgifera to fungal protease inhibitors is likely due to effective adaptation of digestive enzyme expression to dietary protease inhibitors. We continue to study unique protein complexes of higher fungi for the development of new approaches to pest control.

期刊论文 2024-01-01 DOI: 10.3390/insects15010060

Psychrophiles are cold-adapted microorganisms living in cold regions and are known to generate cold-active enzymes such as proteases, lipases, and peptidases. These types of enzymes are a major part of the market of the food and textile sector. This study aimed to isolate and characterize the cold-active and detergent-stable, extracellular protease from psychotrophic bacteria Serratia sp. TGS1 (OQ654005). Protease was purified by gel permeation chromatography using Sephadex G-75. The specific activity of the purified protease was 250 U/mg at 15 & DEG;C, with a purification fold of 5.68 and a percentage yield of 60%. The cold active protease was stable within a temperature range of 5-30 & DEG;C and a pH range of 6-10. Ca+2 and Mg+2 enhanced its activity while chelators like ethylenediaminetetraacetic acid inhibited cold active protease, showing it as metalloprotease in nature. The enzyme was sensitive to Cu+2, Zn+2, and Hg+2, and the proteolytic activity decreased upon treatment with heavy metals. The molecular weight of the protease was estimated to be 47 kDa using sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Proteins within a specific range of molecular weight possess desirable properties for industrial enzyme use. By working on a specific range, the researchers intended to examine an enzyme to examine its specific characteristics. The purified protease showed high stability to detergents like SDS, Tween 20, Tween 60, and Triton X. The maximum velocity V-max and K-m values were 59.90 mg/min/mL and 1.53 mg/mL, respectively. The obtained protease exhibited an interesting activity at a broad range of pH (6-10) and stability at low temperatures (5-30 & DEG;C) and detergents. Such enzymatic features of versatile and potent cold-active enzymes enhance their industrial applications to meet food, dairy, and laundry requirements.

期刊论文 2021-10-01 DOI: http://dx.doi.org/10.1002/jobm.202300192 ISSN: 0233-111X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页