The frequent occurrence of earthquakes worldwide has rendered highway slope protection projects highly vulnerable to damage from seismic events and their secondary disasters. This severely hampers the smooth implementation of post-disaster rescue and recovery efforts. To address this challenge, this study proposes a comprehensive method for assessing seismic losses in slope protection projects, incorporating factors such as topography and elevation to enhance its universality. The method categorizes seismic losses into two main components: damage to protection structures and costs associated with landslide and rockfall clearance and transportation. This study estimates the cost range for common protection structures and clearance methods under general conditions based on widely recognized quota data in China. It establishes criteria for classifying the damage states of protection structures and provides loss ratio values based on real-world seismic examples and expert experience, constructing a model for assessing damage losses. Additionally, by summarizing the geometric characteristics of soil and rock accumulations on road surfaces, a method for estimating landslide volumes is proposed, considering the dynamic impact of slope gradients on clearance and transportation volumes, and a corresponding cost assessment model for clearance and transportation is developed. The feasibility and reliability of the proposed method are verified through two case studies. The results demonstrate that the method is easy to implement and provides a scientific basis for improving relevant standards and practices. It also offers an efficient and scientific tool for loss assessment to industry practitioners.
There is a complex multifactorial coupling effect among the damages of various protection structures on slopes. Existing research focused on the health assessment of individual structures is often insufficient in representing the overall health status of the protection engineering system. Considering the characteristics of expansive soil slope protection engineering, this study proposes a health diagnosis method using combined weights and binary K-means clustering algorithm. The method quantifies the damage data of protection structures based on subjective and objective weights, and clusters the data by combining the binary K-means method and target vector layer to obtain the diagnosis results. Furthermore, an XGBoost-based surrogate diagnosis model is constructed to omit the repetitive modelling process in practical applications to achieve dynamic diagnosis. The proposed method is validated to an expansive soil slope in Gaochun district, Nanjing. The results show that the proposed method can accurately evaluate protection engineering with different degrees of damage; the surrogate model follows the same weight assignment process as the diagnostic method to establish reliable prediction. Based on the proposed method, damage coupling effects between individual protection structures are captured, and targeted maintenance and repair can be implemented. The proposed method can be further extended to other slope engineering.