The harmonization of sampling, sample preparation and laboratory analysis methods to detect carbon compounds in snow requires detailed documentation of those methods and their uncertainties. Moreover, intercomparison experiments are needed to reveal differences and quantify the uncertainties further. Here, we document our sampling, filtering, and analysis protocols used in the intercomparison experiment from three laboratories to detect water-insoluble carbon in seasonal surface snow in the high-mountain environment at Kolm Saigurn (47.067842 degrees N, 12.98394 degrees E, alt 1598 m a.s.l.), Austria. The participating laboratories were TU Wien (Austria), the University of Florence (Italy), and the Finnish Meteorological Institute (Finland). For the carbon analysis, the NIOSH5040 and EUSAAR2 protocols of the OCEC thermal-optical method were used. The median of the measured concentrations of total carbon (TC) was 323 ppb, organic carbon (OC) 308 ppb, and elemental carbon (EC) 16 ppb. The methods and protocols used in this experiment did not reveal large differences between the laboratories, and the TC, OC, and EC values of four inter-comparison locations, five meters apart, did not show meter-scale horizontal variability in surface snow. The results suggest that the presented methods are applicable for future research and monitoring of carbonaceous particles in snow. Moreover, a recommendation on the key parameters that an intercomparison experiment participant should be asked for is presented to help future investigations on carbonaceous particles in snow. The work contributes to the harmonization of the methods for measuring the snow chemistry of seasonal snow deposited on the ground.
Climate change is destabilizing permafrost landscapes, affecting infrastructure, ecosystems, and human livelihoods. The rate of permafrost thaw is controlled by surface and subsurface properties and processes, all of which are potentially linked with each other. However, no standardized protocol exists for measuring permafrost thaw and related processes and properties in a linked manner. The permafrost thaw action group of the Terrestrial Multidisciplinary distributed Observatories for the Study of the Arctic Connections (T-MOSAiC) project has developed a protocol, for use by non-specialist scientists and technicians, citizen scientists, and indigenous groups, to collect standardized metadata and data on permafrost thaw. The protocol introduced here addresses the need to jointly measure permafrost thaw and the associated surface and subsurface environmental conditions. The parameters measured along transects include: snow depth, thaw depth, vegetation height, soil texture, and water level. The metadata collection includes data on timing of data collection, geographical coordinates, land surface characteristics (vegetation, ground surface, water conditions), as well as photographs. Our hope is that this openly available dataset will also be highly valuable for validation and parameterization of numerical and conceptual models, and thus to the broad community represented by the T-MOSAiC project.