The broadband surface albedo of snow can greatly be reduced by the deposition of light-absorbing impurities, such as black carbon on or near its surface. Such a reduction increases the absorption of solar radiation and may initiate or accelerate snowmelt and snow albedo feedback. Coincident measurements of both black carbon concentration and broadband snow albedo may be difficult to obtain in field studies; however, using the relationship developed in this simple model sensitivity study, black carbon mass densities deposited can be estimated from changes in measured broadband snow albedo, and vice versa. Here, the relationship between the areal mass density of black carbon found near the snow surface to the amount of albedo reduction was investigated using the popular snow radiative transfer model Snow, Ice, and Aerosol Radiation (SNICAR). We found this relationship to be linear for realistic amounts of black carbon mass concentrations, such as those found in snow at remote locations. We applied this relationship to measurements of broadband albedo in the Chilean Andes to estimate how vehicular emissions contributed to black carbon (BC) deposition that was previously unquantified.
The influence of Arctic vegetation on albedo, latent and sensible heat fluxes, and active layer thickness is a crucial link between boundary layer climate and permafrost in the context of climate change. Shrubs have been observed to lower the albedo as compared to lichen or graminoid-tundra. Despite its importance, the quantification of the effect of shrubification on summer albedo has not been addressed in much detail. We manipulated shrub density and height in an Arctic dwarf birch (Betula nana) shrub canopy to test the effect on shortwave radiative fluxes and on the normalized difference vegetation index (NDVI), a proxy for vegetation productivity used in satellite-based studies. Additionally, we parametrised and validated the 3D radiative transfer model DART to simulate the amount of solar radiation reflected and transmitted by an Arctic shrub canopy. We compared results of model runs of different complexities to measured data from North-East Siberia. We achieved comparably good results with simple turbid medium approaches, including both leaf and branch optical property media, and detailed object based model parameterisations. It was important to explicitly parameterise branches as they accounted for up to 71% of the total canopy absorption and thus contributed significantly to soil shading. Increasing leaf biomass resulted in a significant increase of the NDVI, decrease of transmitted photosynthetically active radiation, and repartitioning of the absorption of shortwave radiation by the canopy components. However, experimental and modelling results show that canopy broadband nadir reflectance and albedo are not significantly decreasing with increasing shrub biomass. We conclude that the leaf to branch ratio, canopy background, and vegetation type replaced by shrubs need to be considered when predicting feedbacks of shrubification to summer albedo, permafrost thaw, and climate warming. (C) 2014 Elsevier Inc. All rights reserved.