共检索到 9

The freeze-thaw cycle of near-surface soils significantly affects energy and water exchanges between the atmosphere and land surface. Passive microwave remote sensing is commonly used to observe the freeze-thaw state. However, existing algorithms face challenges in accurately monitoring near-surface soil freeze/thaw in alpine zones. This article proposes a framework for enhancing freeze/thaw detection capability in alpine zones, focusing on band combination selection and parameterization. The proposed framework was tested in the three river source region (TRSR) of the Qinghai-Tibetan Plateau. Results indicate that the framework effectively monitors the freeze/thaw state, identifying horizontal polarization brightness temperature at 18.7 GHz (TB18.7H) and 23.8 GHz (TB23.8H) as the optimal band combinations for freeze/thaw discrimination in the TRSR. The framework enhances the accuracy of the freeze/thaw discrimination for both 0 and 5-cm soil depths. In particular, the monitoring accuracy for 0-cm soil shows a more significant improvement, with an overall discrimination accuracy of 90.02%, and discrimination accuracies of 93.52% for frozen soil and 84.68% for thawed soil, respectively. Furthermore, the framework outperformed traditional methods in monitoring the freeze-thaw cycle, reducing root mean square errors for the number of freezing days, initial freezing date, and thawing date by 16.75, 6.35, and 12.56 days, respectively. The estimated frozen days correlate well with both the permafrost distribution map and the annual mean ground temperature distribution map. This study offers a practical solution for monitoring the freeze/thaw cycle in alpine zones, providing crucial technical support for studies on regional climate change and land surface processes.

期刊论文 2025-01-01 DOI: 10.1109/JSTARS.2024.3494267 ISSN: 1939-1404

For the period 2001-2020, the interannual variability of the normalized difference vegetation index (NDVI) is investigated in connection to Indian summer monsoon rainfall (ISMR). According to Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data, the ISMR and the vegetative activity of the Indo-Gangetic plain (IGP) in the month of January show a significant negative association. We hypothesized that the January vegetation state affects the ISMR via a delayed hydrological response, in which the wet soil moisture anomaly formed throughout the winter to accommodate the water needs of intensive farming influences the ISMR. The soil moisture anomalies developed in the winter, particularly in the root zone, persisted throughout the summer. Evaporative cooling triggered by increasing soil moisture lowers the summer surface temperature across the IGP. The weakening of monsoon circulation as a result of the reduced intensity of land-sea temperature contrast led in rainfall suppression. Further investigation shows that moisture transport has increased significantly over the past two decades as a result of increasing westerly over the Arabian Sea, promoting rainfall over India. Agriculture activities, on the other hand, have resulted in greater vegetation in India's northwest and IGP during the last two decades, which has a detrimental impact on rainfall processes. Rainfall appears to have been trendless during the last two decades as a result of these competing influences. With a lead time of 5 months, this association between January's vegetation and ISMR could be one of the potential predictors of seasonal rainfall variability.

期刊论文 2023-04-01 DOI: 10.1007/s00382-022-06426-7 ISSN: 0930-7575

Quantifying the concentration of absorbing aerosol is essential for pollution tracking and calculation of atmospheric radiative forcing. To quickly obtain absorbing aerosol optical depth (AAOD) with high-resolution and high-accuracy, the gradient boosted regression trees (GBRT) method based on the joint data from Ozone Monitoring Instrument (OMI), Moderate Resolution Imaging Spectro-Radiometer (MODIS), and AErosol RObotic NETwork (AERONET) is used for TROPOspheric Monitoring Instrument (TROPOMI). Compared with the ground-based data, the correlation coefficient of the results is greater than 0.6 and the difference is generally within +/- 0.04. Compared with OMI data, the underestimation has been greatly improved. By further restricting the impact factors, three valid conclusions can be drawn: 1) the model with more spatial difference information achieves better results than the model with more temporal difference information; 2) the training dataset with a high cloud fraction (0.1-0.4) can partly improve the performance of GBRT results; and 3) when aerosol optical depth (AOD) is less than 0.3, the perform of retrieved AAODs is still good by comparing with ground-based measurements. The novel finding is expected to contribute to regional and even urban anthropogenic pollution research.

期刊论文 2023-01-01 DOI: 10.1109/TGRS.2022.3231699 ISSN: 0196-2892

The Poland-AOD aerosol research network was established in 2011 to improve aerosol-climate interaction knowledge and provide a real-time and historical, comprehensive, and quantitative database for the aerosol optical properties distribution over Poland. The network consists of research institutions and private owners operating 10 measurement stations and an organization responsible for aerosol model transport simulations. Poland-AOD collaboration provides observations of spectral aerosol optical depth (AOD), angstrom ngstrom Exponent (AE), incoming shortwave (SW) and longwave (LW) radiation fluxes, vertical profiles of aerosol optical properties and surface aerosol scattering and absorption coefficient, as well as microphysical particle properties. Based on the radiative transfer model (RTM), the aerosol radiative forcing (ARF) and the heating rate are simulated. In addition, results from GEM-AQ and WRF-Chem models (e.g., aerosol mass mixing ratio and optical properties for several particle chemical components), and HYSPLIT back-trajectories are used to interpret the results of observation and to describe the 3D aerosol optical properties distribution. Results of Poland-AOD research indicate progressive improvement of air quality and at mospheric turbidity during the last decade. The AOD was reduced by about 0.02/10 yr (at 550 nm), which corresponds to positive trends in ARF. The estimated clear-sky ARF trend is 0.34 W/m(2)/10 yr and 0.68 W/m(2)/10 yr, respectively, at TOA and at Earth's surface. Therefore, reduction in aerosol load observed in Poland can significantly contribute to climate warming.

期刊论文 2021-12-01 DOI: 10.3390/atmos12121583

Brown carbon (BrC) aerosols have important warming effects on Earth's radiative forcing. However, information on the evolution of the light-absorption properties of BrC aerosols in the Asian outflow region is limited. In this study, we evaluated the light-absorption properties of BrC using in-situ filter measurements and sky radiometer observations of the ground-based remote sensing network SKYradiometer NETwork (SKYNET) made on Fukue Island, western Japan in 2018. The light-absorption coefficient of BrC obtained from filter measurements had a temporal trend similar to that of the ambient concentration of black carbon (BC), indicating that BrC and BC have common combustion sources. The absorption Angstrom exponent in the wavelength range of 340-870 nm derived from the SKYNET observations was 15% higher in spring (1.81 +/- 0.30) than through the whole year (1.53 +/- 0.50), suggesting that the Asian outflow carries light-absorbing aerosols to Fukue Island and the western North Pacific. After eliminating the contributions of BC, the absorption Angstrom exponent of BrC alone obtained from filter observations had a positive Spearman correlation (r(s) = 0.77, p < 0.1) with that derived from SKYNET observations but 33% higher values, indicating that the light-absorption properties of BrC were suc-cessfully captured using the two methods. Using the atmospheric transport model FLEXPART and fire hotspots obtained from the Visible Infrared Imaging Radiometer Suite product, we identified a high-BrC event related to an air mass originating from regions with consistent fossil fuel combustion and sporadic open biomass burning in central East China. The results of the study may help to clarify the dynamics and climatic effects of BrC aerosols in East Asia. (C) 2021 Elsevier B.V. All rights reserved.

期刊论文 2021-11-25 DOI: 10.1016/j.scitotenv.2021.149155 ISSN: 0048-9697

In this paper, we present the optical and radiative properties of aerosols for the first time measured at Yogi Vemana University (YVU) campus (14.47 degrees N, 78.82 degrees E, 138m above sea level), Kadapa, a semi-arid region in southern India during December 2013-February 2015. The collocated measurements of aerosol optical depth (AOD) and black carbon (BC) mass concentration are carried out at Kadapa using the ten channels Multi Wavelength solar Radiometer (MWR) and seven wavelengths Aethalometer, respectively. This work mainly focused on studying the temporal and spectral behavior of aerosol properties, and their implications to the aerosol direct radiative forcing (ADRF). The respective seasonal mean values of AOD at 500 nm were found to be 0.33 +/- 0.01, 0.46 +/- 0.05, 0.27 +/- 0.02 and 0.37 +/- 0.06 during the winter, summer, monsoon and post monsoon, with an annual mean of 0.38 +/- 0.18. It is revealed that the Angstrom exponent (AE or asso-sso) value was observed to be maximum (minimum) in March (July) with 1.75 +/- 0.19 (0.65 +/- 0.14) indicates a predominance of fine (coarse) mode aerosols. Added to this, the diurnal variations of BC mass concentration exhibited two maxima with peaks occurred during 07:00-08:00 h and 20:00-21:00 h local time (LT), and a minimum of the afternoon hours around 13:00-16:00 h LT. Further, the AOD-AE relationship was investigated over Kadapa, and the results conclude that the urban-industrial/biomass burning (UI/BB) type aerosols are more dominated during the study period. The OPAC model retrieved single scattering albedo (SSA) at 500 nm was found to vary between 0.83 and 0.92 with relatively lower values during winter, suggest an increase in absorbing type aerosols produced from anthropogenic activities. The SBDART model computed seasonal averaged ADRF within the atmosphere (ADRFATm) was found to be 26.7 +/- 2.3, 25.1 +/- 1.0, 17.8 +/- 3.9 and 18.3 +/- 2.6 W m(-2) during the summer, winter, monsoon and post-monsoon seasons, respectively at Kadapa. This illustrated that the absorption of solar radiation in the ATM is high which produces a significant amount of heating effect, resulted in a maximum atmospheric heating rate of 0.75 K day(-1).

期刊论文 2018-09-01 DOI: 10.1016/j.atrnosres.2018.03.013 ISSN: 0169-8095

Aerosol radiative forcing (ARE) over intense mining area in Indian monsoon trough region, computed based on the aerosol optical properties obtained through Prede (POM-1L) sky radiometer and radiative transfer model, are analysed for the year 2011 based on 21 clear sky days spread through seasons. Due to active mining and varied minerals ARF is expected to be significantly modulated by single scattering albedo (SSA). Our studies show that radiative forcing normalized by aerosol optical depth (ADD) is highly correlated with SSA (0.96) while ARF at the surface with AOD by 0.92. Our results indicate that for a given AOD, limits or range of ARF are determined by SSA, hence endorses the need to obtain SSA accurately, preferably derived through observations concurrent with AOD. Noticeably, ARE at the top-of the atmosphere is well connected to SSA (r = 0.77) than AOD (r = 0.6). Relation between observed black carbon and SSA are investigated. A possible over estimation of SSA by the inversion algorithm, SKYRAD.pack 4.2, used in the current study is also discussed. Choice of atmospheric profiles deviating from tropical to mid altitude summer or winter does not appear to be sensitive in ARE calculation by SBDART. Based on the 21 clear sky days, a multiple linear regression equation is obtained for ARF(bot) as a function of AOD and SSA with a bias of +/- 2.7 Wm(-2). This equation is verified with an independent data set of seasonal mean AOD and SSA to calculate seasonal ARF that compares well with the modeled ARE within +/- 4 Wm(-2). (C) 2013 Elsevier Ltd. All rights reserved.

期刊论文 2013-12-01 DOI: 10.1016/j.atmosenv.2013.09.035 ISSN: 1352-2310

Black carbon (BC), brown carbon (BrC), and mineral dust (DU) are three major light absorbing aerosols, playing important roles in climate change. Better knowledge of their concentrations is necessary for more accurate estimates of their radiative forcing effects of climate. We present a method to retrieve columnar contents of BC, BrC, and DU simultaneously from spectral refractive indices and spectral single scattering albedo obtained from the sun-sky radiometer measurements. Then, this method is applied to investigate the columnar volume fractions and mass concentrations of BC, BrC, and DU in Beijing, China, based on measurements obtained from 2009 to 2010. Results show that among the three absorbing aerosols, DU dominates the largest volume fraction in the total aerosol volume (20-45%), followed by BrC (5-25%), and BC (30%), while during June-September, the DU fraction is generally lower than 30%. BC is characterized by low levels throughout the year. The monthly mean BC columnar mass concentration ([BC]) ranges from 2.7 to 7.3 mg/m(2) with winter slightly higher than other seasons. As a preliminary validation, we compare our retrieved [BC] with in situ measurements. Similar day-to-day variation trends and good correlations are found between the retrieved [BC] and in situ measurements.

期刊论文 2013-06-27 DOI: 10.1002/jgrd.50356 ISSN: 2169-897X

The column-integrated optical and radiative properties of aerosols in the downwind area of East Asia were investigated based on sun/sky radiometer measurements performed from February 2004 to June 2005 at Gwangju (35.23A degrees N, 126.84A degrees E) and Anmyeon (36.54A degrees N, 126.33A degrees E), Korea. The observed aerosol data were analyzed for differences among three seasons: spring (March-May), summer (June-August), and autumn/winter (September-February). The data were also categorized into five types depending on the air mass origin in arriving in the measurement sites: (a) from a northerly direction in spring (S-N), (b) from a westerly direction in spring (S-W), (c) cases with a low ngstrom exponent (< 0.8) in spring (dust), (d) from a northerly direction in autumn/winter (AW(N)), and (e) from a westerly direction during other seasons (AW(W)). The highest ngstrom exponents (alpha) at Gwangju and Anmyeon were 1.43 A +/- 0.30 and 1.49 A +/- 0.20, respectively, observed in summer. The lowest column-mean single-scattering albedo (omega) at 440 nm observed at Gwangju and Anmyeon were 0.89 A +/- 0.02 and 0.88 A +/- 0.02, respectively, during a period marked by the advection of dust from the Asian continent. The highest omega values at Gwangju and Anmyeon were 0.95 A +/- 0.02 and 0.96 A +/- 0.02, respectively, observed in summer. Variations in the aerosol radiative-forcing efficiency (beta) were related to the conditions of the air mass origin. The forcing efficiency in summer was -131.7 and -125.6 W m(-2) at the surface in Gwangju and Anmyeon, respectively. These values are lower than those under the atmospheric conditions of spring and autumn/winter. The highest forcing efficiencies in autumn/winter were -214.3 and -255.9 W m(-2) at the surface in Gwangju and Anmyeon, respectively, when the air mass was transported from westerly directions.

期刊论文 2012-08-01 DOI: 10.1007/s10661-011-2300-7 ISSN: 0167-6369
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-9条  共9条,1页