共检索到 2

Seasonally frozen ground (SFG) is a significant component of the cryosphere, and its extent is gradually increasing due to climate change. The hydrological influence of SFG is complex and varies under different climatic and physiographic conditions. The summer rainfall dominant climate pattern in Qinghai Lake Basin (QLB) leads to a significantly different seasonal freeze-thaw process and groundwater flow compared to regions with winter snowfall dominated precipitation. The seasonal hydrological processes in QLB are not fully understood due to the lack of soil temperature and groundwater observation data. A coupled surface and subsurface thermal hydrology model was applied to simulate the freeze-thaw process of SFG and groundwater flow in the QLB. The results indicate that SFG begins to freeze in early November, reaches a maximum freezing depth of approximately 2 meters in late March, and thaws completely by June. This freeze-thaw process is primarily governed by the daily air temperature variations. During the early rainy season from April to June, the remaining SFG in deep soil hinders the majority of rainwater infiltration, resulting in a two-month delay in the peak of groundwater discharge compared to scenario with no SFG present. Colder conditions intensify this effect, delaying peak discharge by 3 months, whereas warmer conditions reduce the lag to 1 month. The ice saturation distribution along the hillslope is affected by topography, with a 10 cm deeper ice saturation distribution and 3 days delay of groundwater discharge in the steep case compared to the flat case. These findings highlight the importance of the freeze-thaw process of SFG on hydrological processes in regions dominated by summer rainfall, providing valuable insights into the hydro-ecological response. Enhanced understanding of these dynamics may improve water resource management strategies and support future research into climate-hydrology interactions in SFG-dominated landscapes.

2024-11-22 Web of Science

Under the condition of warming and wetting trend on Qinghai-Tibet Plateau due to climate change, summer rainfall infiltration alters the change of the hydrothermal state and may impact the cooling performance of crushed-rock interlayer embankment. Herein, two experimental models with the 1.4-m-thickness (M1) and 0.6m-thickness (M2) crushed-rock layer (CRL) were conducted in an environmental simulator experiencing the freezing and thawing cycles. The hydrothermal response to rainfall events was investigated and quantified by analyzing the variations of measured soil temperatures, volumetric water contents, and heat fluxes. Thermal observations show that rainfall infiltration caused heat advection and resulted in step change of soil temperature at depth. Rainfall infiltration reduced the surface temperature of the CRL, but warmed the soil layer at depth by up to 2.13 degrees C. The average temperature of the base soil layer under the action of concentrated rainfall basically showed an increasing trend. In particular, the CRL with a smaller thickness (M2) had a more significant thermal response to rainfall event. In addition, the moisture pulse, experiencing a step increase and following a gradual decrease caused by rainfall water infiltration, appeared several hours earlier than the temperature pulse. Moreover, infiltrated water produced an additional energy to warm the soil at depth, with maximum heat flux of 12.13 W/m2 and 79.90 W/m2 for the M1 and M2, respectively. The infiltrated water accumulated at the top of base soil significantly delayed the refreezing processes in cold period due to the latent heat effect. The net founding of this study provide an insight into improving the design crushed-rock embankment in permafrost regions.

2022-09-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页