共检索到 25

The mining and reclamation of opencast coal mines affect the soil volumetric water content (SVWC1). An accurate measurement of the SVWC is critical for land reclamation. However, traditional methods often damage the soil structure and are time-consuming. Thus, a rapid and non-destructive method is required to measure the SVWC in reclaimed mining areas. This study aimed to evaluate the feasibility and effectiveness of using ground penetrating radar (GPR) for estimating SVWC in reclaimed mining areas. We obtained GPR data and collected soil profile samples from the South Dump of the Antaibao opencast coal mine in Pinglu District, Shuozhou City, Shanxi Province. Random Hough transformation and inverse distance weighted interpolation were used to analyze the two-dimensional soil water layer thickness (SWLT) and SVWC in different soil layers and profiles. The radar estimated and the sampling measured value of SVWC were consistent with the soil depth. The Pearson correlation coefficient (r) between the radar estimated and the sampling measured values of SVWC was 0.850 in different soil layers, the lowest root mean squared error (RMSE) was 0.43%, and the lowest relative root mean square error (RRMSE) was 3.80%. The r was up to 0.959, the lowest RMSE was 0.58% to 0.90%, and the lowest RRMSE was 1.46% in different profiles. These results demonstrate the method's feasibility and effectiveness, enabling the precise non-destructive estimation of SVWC. The results provide valuable technical support for the efficient reclamation and restoration of mining areas.

期刊论文 2025-05-01 DOI: 10.1016/j.catena.2025.108845 ISSN: 0341-8162

The vegetation in Huayuan County was seriously damaged during the mining process. Using remote sensing data, the vegetation coverage in the Huayuan County lead-zinc mining area was analysed to explore the temporal trends and driving factors of the FVC. As calculated from remote sensing data, the average FVC decreased rapidly from 0.74 to 0.36 from 2000-2008, with no significant change from 2009 to -2018, and gradually recovered from 0.36 to 0.5 from 2019-2024. Two typical mining areas were selected for research. After artificial reclamation, the damaged vegetation can be restored, whereas the vegetation in the naturally restored mining area is difficult to restore. The cluster map of the mining area is obtained via the Moran index, which reveals that artificial reclamation has an obvious effect on vegetation restoration. The destruction of vegetation in mining areas is affected primarily by human activities, while human activities are affected primarily by changes in policy; thus, policy factors are the main factors driving changes in vegetation in mining areas, whereas natural factors have a small influence on changes in the FVC in mining areas. This study provides a theoretical basis for vegetation restoration in other mining areas and promotes sustainable development.

期刊论文 2025-02-01 DOI: 10.1016/j.ecolind.2025.113171 ISSN: 1470-160X

The Puna region is distinguished by its extreme environmental conditions and highly valuable mining resources. However, the unregulated management of mine tailings poses a significant threat to the ecological integrity of this region. This study assesses the environmental impacts of mine tailings at La Concordia mine (Salta province, Argentina) and examines the physiological and biochemical adaptations of Parastrephia quadrangularis (Meyen) Cabrera that enable its survival under this extreme conditions. Our findings reveal that prolonged weathering of mine tailings results in the generation of acid mine drainage characterized by low pH levels (< 3.5) and elevated concentrations of As, Fe, Cu, Pb, and Zn. These levels exceed drinking water standards by 5-10 times for As, 6-13 times for Zn, 80-120 times for Pb, 20-380 times for Fe, and 4-10 times for Cu. Soil analyses highlight low pH, high salinity, and elevated concentrations of Zn (310 mg kg(-1)), Pb (153 mg kg(-1)), and Cu (128 mg kg(-1)). Despite these harsh environmental conditions, 7 plant species where identified, with Parastrephia quadrangularis being the only species present at the most polluted site. This species exhibits high heavy metal bioaccumulation and robust tolerance mechanisms against heavy metal-induced oxidative damage, as evidenced by stable total chlorophylls and malondialdehyde content, and increased levels of carotenoids, proline, and phenolic compounds. These findings emphasize Parastrephia quadrangularis as a promising candidate for revegetation and phytostabilization for sustainable mine closure programs in La Puna region.

期刊论文 2025-01-24 DOI: 10.1007/s10661-025-13653-y ISSN: 0167-6369

For six decades the African Journal of Range & Forage Science and its precursors have contributed to understanding drivers of rangeland degradation and development of approaches for restoration of damage by grazing, mining and other forms of land use. Of the 857 articles selected by the keyword search, only around 150 focused on reversing loss of natural capital, including soil, water and biodiversity and or resilience, and were cited in this review. Restoration approaches ranged from grazing management such as resting, rotational grazing and grazing intensification, to interventions such as burning, browsing and clearing of encroaching woody or non-native plants, resource capture, reseeding and replanting. Global change brings novel challenges for restoration research. Major knowledge gaps include assessment of restoration progress, development of policy and incentives to promote and fund restoration, and identification of unintended risks posed by restoration interventions.

期刊论文 2025-01-02 DOI: 10.2989/10220119.2024.2403686 ISSN: 1022-0119

Large deformations of strata caused by shallow tunnel excavation in urban reclamation areas pose a serious threat to geological safety. In this paper, geo-mechanical model tests and numerical simulations were conducted to investigate the large deformation characteristics based on the Haicang tunnel in Xiamen, China. First, the tunnel excavation process using the double side drift method was simulated to reveal the large deformation characteristics and influencing factors. Then, geo-mechanical model tests were conducted to further investigate the deformation characteristics, stress release patterns and pore water pressure evolution. The results show that groundwater and the thickness of the backfill soil are the primary factors affecting the deformation behavior. Meanwhile, the stress release and pore water pressure dissipation resulting from the core construction procedure are direct causes of large deformation. The research results can serve as a reference for the prevention and control of large deformation in shallow buried tunnel construction.

期刊论文 2025-01-01 DOI: 10.1007/s10064-024-04067-0 ISSN: 1435-9529

Construction of infrastructure over soft soils presents significant challenges for sustainable foundation solutions due to low bearing capacity, high compressibility, ongoing long-term creep and onerous design performance criteria. The commonly adopted solution to these challenges is to construct a rigid structure which is often carbon intensive, costly and does not necessarily circumvent all differential settlement issues. This paper presents a case study of the preloading treatment design of a road embankment at a site in Wentworth Point, NSW, underlain by soft reclaimed and alluvial sediments between 12-20 m deep. Ground improvement through preloading and surcharging was proposed for the new road infrastructure servicing the development buildings, in lieu of piled foundations or rigid inclusions adopted for neighbouring developments. By using clusters of investigation (boreholes, CPT, sDMT) with laboratory testing, detailed ground profile interpretation was possible to develop Finite Element models to predict soft soil creep model under proposed treatments. During the ground treatment period, the contractor and design team adopted an observational method in determining the treatment period, following a set monitoring regime and a response plan. This case study includes a discussion on the considerations and lessons learned in pursuing a more sustainable foundation solution in soft soil including monitored impacts of Prefabricated Vertical Drain Installation and the value of plotting data differently to see what is happening through a different

期刊论文 2025-01-01 DOI: 10.1007/978-981-97-8213-0_14 ISSN: 2366-2557

Restoration is moving towards a more mechanistic approach that emphasizes restoration of ecosystem services. Trait-based approaches provide links between species identity and ecosystem functions and have been suggested as a promising way to formally integrate ecosystem services in the design of restoration programs. While practitioners have been routinely using informal knowledge on plant traits in their practices, these approaches are underutilized as operationalization remains challenging. The goal of this paper is to provide guidance for applied scientists and restoration practitioners looking to apply a trait-based approach to restore forest ecosystems. We present a five-step framework: (1) selection of services to be restored, (2) trait selection, (3) data acquisition, (4) analytical planning, and (5) empirical testing and monitoring. We use three Canadian case studies to illustrate the applicability of our framework and the variety of ways trait-based approaches can inform restoration practices: (1) restoration of urban woodlots after an insect outbreak, (2) restoration of a smelter-damaged landscape surrounding an urban area, and (3) reclamation of remote upland forests after oil- and gas-related disturbances. We describe the major mechanisms and traits that determine vegetation effects on ecosystem services of importance in each case study. We then discuss data availability, methodological constraints, comparability issues, analytical methods, and the importance of empirical testing and monitoring to ensure realistic prediction of service restoration. By outlining issues and offering practical information, we aim to contribute to a more robust use of traits in ecological restoration.

期刊论文 2024-12-01 DOI: 10.1139/er-2023-0130 ISSN: 1208-6053

AimsOpencast lignite mining causes significant disturbances to the natural environment. It isn't only the plant cover that is destroyed, also the soil cover is damaged. Soils are replaced by dumps with material composition that properties differ significantly from natural soils. Reclamation of these areas is necessary.MethodsThis study presents the effect of forty-three years of agricultural reclamation involving alternating winter wheat and winter rapeseed in three fertilization treatments: 0- (without fertilization), I-NPK and II-NPK on the chemical properties of Technosols.ResultsThe investigation demonstrated that the Ap-horizon emerged in the case of I-NPK and II-NPK treatments. There was an improvement in chemical properties for the Ap-horizon as compared to 1978: soil organic carbon (SOC), total nitrogen (TN), available phosphorus (P) and potassium (K) increased. The CaCO3 decreased, and SOC/TN ratio declined, while pH and cation exchange capacity (CEC) remained unchanged. For the Technosols' surface horizon of the 0-NPK, there were also temporal increases in TN and SOC with a decrease in the SOC/TN ratio, whereas P, K, pH, CEC and CaCO3 values did not change significantly.ConclusionIn the 43-year-old post-mining Technosols, under the effect of fertilization and cultivated plants, the Ap horizon has formed, while in the non-fertilized soil the AC and CA horizons. Soil that were fertilized had significantly higher SOC, TN, P and K values in the surface horizon than minesoils without fertilization. In the subsurface horizons, the properties of minesoils were similar regardless of fertilization.

期刊论文 2024-10-03 DOI: 10.1007/s11104-024-06983-2 ISSN: 0032-079X

The vacuum preloading technique is extensively employed for ground improvement, particularly for slurry ground characterized by high-water content and low strength. Such ground frequently exhibits a delay in pore water pressure dissipation when treated with prefabricated vertical drains. To clarify the drainage and consolidation behaviour of high-water content slurry ground under vacuum preloading, this study proposed a two-stage combined model that integrates both filtration and consolidation processes. Initially, an axisymmetric filtration model was used to describe the formation of the soil column through the radial migration and compaction of the particles. The end-of-filtration radial distributions of void ratio, permeability coefficient, and effective pressure served as initial conditions for the consolidation stage analysis. This stage was depicted using a large strain consolidation model based on the free strain condition. The results showed the necessity of incorporating the filtration stage to capture the overall drainage mechanism and characteristics of slurry ground with vacuum preloading treatment.

期刊论文 2024-10-01 DOI: 10.1002/nag.3804 ISSN: 0363-9061

The demand for raw materials is increasing rapidly, leading to higher production targets for mining industries. Currently, largescale opencast mining operations are causing extensive damage to forest areas, agricultural land, and various habitats for humans and animals. Despite these negative impacts, mining plays a crucial role in our national economy, serving as the second backbone of the country after agriculture. Given the inevitability of mining operations, it is essential to carry them out in a sustainable manner, minimizing or even eliminating environmental harm. This study focuses on the challenges associated with iron ore mining and emphasizes the significance of ecological restoration and land reclamation in mitigating environmental consequences. The focus of this research work is the implementation of a comprehensive procedural approach to achieve sustainable mine reclamation in an easy way. The primary objective is to restore the biodiversity of the Saranda Forest ecosystem. To accomplish this, a three-tier plantation model was adopted, involving the strategic planting of 2,664 trees and 3,136 herbs/shrubs in 1.5 hector degraded backfilled area. This initiative aims to rehabilitate the degraded land that has been adversely affected by mining activities.

期刊论文 2024-09-01 DOI: 10.17491/jgsi/2024/173985 ISSN: 0016-7622
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共25条,3页