When uranium heap leaching tailings (UHLT) are used as filling aggregates, their discontinuous and non-uniform grading characteristics can easily cause segregation, settlement of the filling slurry, and deterioration of cemented body mechanical properties, seriously affecting the safety of the filling system and filling quality. To address the bimodal distribution defects of UHLT, characterized by excessively high proportions of coarse and fine particles with a lack of intermediate particle sizes, this study simulated its particle size characteristics using inert materials such as loess, fine sand, sand, and gravel. The study systematically verified the impact of grading defects on flow stability and mechanical properties. The filling slurry exhibited a spread of 222.5 mm with obvious segregation, and the uniaxial compressive strength at 28 days was 9.09 MPa. To overcome this bottleneck, this research innovatively proposed optimization strategies of qualitative reconstruction (QLR) and quantitative reconstruction (QTR). QLR involves adding medium-sized particles in stages and replacing equal amounts of coarse and fine particles, reducing the spread to 202.7 mm under an optimized quantity of 50 g, with a uniaxial compressive strength of 6.84 MPa at 3 days. However, slurry segregation still occurred. QTR established a multi-particle-size independent calculation model based on the extended Talbot gradation theory, and through the staged quantitative reconstruction of UHLT with aggregate having a grading index of 0.4, the spread decreased to 168.4 mm without segregation, achieving a uniaxial compressive strength of 5.58 MPa at 3 days and 9.11 MPa at 28 days. The study shows that both QLR and QTR can effectively improve the grading of UHLT, with QLR being simple and QTR offering precise control. The research provides new approaches for regulating filling slurries with similar discontinuous and non-uniform graded aggregates, and its innovative methodology can be extended to multiple fields such as concrete aggregate optimization.
Deep geological sequestration is widely recognized as a reliable method for nuclear waste management, with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems. This study evaluated the suitability of granite, basalt, and marble as reservoir rocks capable of withstanding extreme high-temperature and high-pressure conditions. Using a custom-designed triaxial testing apparatus for thermal-hydro-mechanical (THM) coupling, we subjected rock samples to temperatures ranging from 20 degrees C to 800 degrees C, triaxial stresses up to 25 MPa, and seepage pressures of 0.6 MPa. After THM treatment, the specimens were analyzed using a Real-Time Load-Synchronized Micro-Computed Tomography (MCT) Scanner under a triaxial stress of 25 MPa, allowing for high-resolution insights into pore and fissure responses. Our findings revealed distinct thermal stability profiles and microscopic parameter changes across three phases-slow growth, slow decline, and rapid growth-with critical temperature thresholds observed at 500 degrees C for granite, 600 degrees C for basalt, and 300 degrees C for marble. Basalt showed minimal porosity changes, increasing gradually from 3.83% at 20 degrees C to 12.45% at 800 degrees C, indicating high structural integrity and resilience under extreme THM conditions. Granite shows significant increases in porosity due to thermally induced microcracking, while marble rapidly deteriorated beyond 300 degrees C due to carbonate decomposition. Consequently, basalt, with its minimal porosity variability, high thermal stability, and robust mechanical properties, emerges as an optimal candidate for nuclear waste repositories and other high-temperature geological engineering applications, offering enhanced reliability, structural stability, and long-term safety in such settings. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
The mining and reclamation of opencast coal mines affect the soil volumetric water content (SVWC1). An accurate measurement of the SVWC is critical for land reclamation. However, traditional methods often damage the soil structure and are time-consuming. Thus, a rapid and non-destructive method is required to measure the SVWC in reclaimed mining areas. This study aimed to evaluate the feasibility and effectiveness of using ground penetrating radar (GPR) for estimating SVWC in reclaimed mining areas. We obtained GPR data and collected soil profile samples from the South Dump of the Antaibao opencast coal mine in Pinglu District, Shuozhou City, Shanxi Province. Random Hough transformation and inverse distance weighted interpolation were used to analyze the two-dimensional soil water layer thickness (SWLT) and SVWC in different soil layers and profiles. The radar estimated and the sampling measured value of SVWC were consistent with the soil depth. The Pearson correlation coefficient (r) between the radar estimated and the sampling measured values of SVWC was 0.850 in different soil layers, the lowest root mean squared error (RMSE) was 0.43%, and the lowest relative root mean square error (RRMSE) was 3.80%. The r was up to 0.959, the lowest RMSE was 0.58% to 0.90%, and the lowest RRMSE was 1.46% in different profiles. These results demonstrate the method's feasibility and effectiveness, enabling the precise non-destructive estimation of SVWC. The results provide valuable technical support for the efficient reclamation and restoration of mining areas.
In the concurrent extraction of coal and gas, the quantitative assessment of evolving characteristics in mining-induced fracture networks and mining-enhanced permeability within coal seams serves as the cornerstone for effective gas extraction. However, representing mining-induced fracture networks from a three-dimensional (3D) sight and developing a comprehensive model to evaluate the anisotropic mining-enhanced permeability characteristics still pose significant challenges. In this investigation, a field experiment was undertaken to systematically monitor the evolution of borehole fractures in the coal mass ahead of the mining face at the Pingdingshan Coal Mining Group in China. Using the testing data of borehole fracture, the mining-induced fracture network at varying distances from the mining face was reconstructed through a statistical reconstruction method. Additionally, utilizing fractal theory, a model for the permeability enhancement rate (PER) induced by mining was established. This model was employed to quantitatively depict the anisotropic evolution patterns of PER as the mining face advanced. The research conclusions are as follows: (1) The progression of the mining-induced fracture network can be classified into the stage of rapid growth, the stage of stable growth, and the stage of weak impact; (2) The PER of mining-induced fracture network exhibited a typical progression that can be characterized with slow growth, rapid growth and significant decline; (3) The anisotropic mining-enhanced permeability of the reconstructed mining-induced fracture networks were significant. The peak PER in the vertical direction of the coal seam is 6.86 times and 4446.38 times greater than the direction perpendicular to the vertical thickness and the direction parallel to the advancement of the mining face, respectively. This investigatione provides a viable approach and methodology for quantitatively assessing the anisotropic PER of fracture networks induced during mining, in the concurrent exploitation of coal and gas. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Insight into the growth of internal microstructure and surface morphology is critical for understanding the robustness of red sandstone artifacts in frigid environments. Since freeze-thaw (F-T) cycles can exacerbate the surface deterioration of water-bearing sandstone, a series of investigation on fresh and weathered water-bearing sandstone samples with different F-T cycle numbers (i.e. 0-100) is performed in this study, including three-dimensional (3D) laser scanning, scanning electron microscope (SEM) and computed tomography (CT) scanning tests, thermal property tests, Brazilian tests, and multi-field numerical simulations. Our results demonstrate that with increasing F-T cycles, the surface fractal dimension and specific surface area of red sandstone samples increase, and the pore size distribution inside rocks shifts from ultrananopores (10-100 nm) to micro-pores (0.1-100 mm) and ultramicropores (100 mm & thorn;). Spatially, the pores generated by the F-T cycles are more prominent near the surfaces of rock samples. Numerical simulation indicates that the uneven pore distribution leads to surface degradation. After 100 F-T cycles, the intergranular (IG) cement of the samples cracks, and the IG fractures are widened; eventually, due to the structural integrity weakening, the tensile strength is drastically reduced by over half. The thermal properties of the water-saturated sandstone can be improved during the F-T cycles, and a strong coefficient of determination of 0.98 exists between the fractal dimensions of sandstone surface and the tensile strength. When assessing the mechanical properties of stone artifacts under F-T cycles, the morphological damage of red sandstone should first be investigated when in situ sampling is inappropriate. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
In recent years, frequent flood disasters have posed significant threats to human life and property. From 28 July to 1 August 2023, a basin-wide extreme flood occurred in the Haihe River Basin (23.7 flood). The Gravity Recovery and Climate Experiment satellite can effectively detect the spatiotemporal characteristics of terrestrial water storage anomalies (TWSA) and has been widely used in flood disaster monitoring. However, flood events usually occur on a submonthly scale. This study first utilizes near-real-time precipitation data to illustrate the evolution of the 23.7 extreme flood. We then reconstruct daily TWSA to improve the issues of coarse temporal resolution and data latency and further calculate wetness index (WI) to explore its flood warning. In addition, we analyze soil moisture storage anomalies to provide a comprehensive understanding of flood mechanisms. The study also compares the 2023 floods to a severe flood event in 2021. Results indicate that reconstructed daily TWSA increases by 143.43 mm in 6 days during the 23.7 flood, highlighting the high sensitivity of our approach to extreme events. Moreover, compared to daily runoff data, the WI consistently exceeds warning thresholds 2-3 days in advance, demonstrating the flood warning capability. The flood event 2021 is characterized by long duration and large precipitation extremes, whereas the 2023 flood affects a wider area. This study provides a reference for using daily TWSA to monitor short-term flood events and evaluate the flood warning potential of WI, aiming to enhance near-real-time flood monitoring and support flood prevention and damage mitigation efforts.
The development of ground fissures in the subsidence area induced by shallow-buried extra-thick coal seam mining leads to a decrease in soil water-holding capacity and vegetation withering. The investigation of the spatial distribution characteristics of soil pore structure in mining-induced subsidence areas and the elucidation of the response mechanism between soil physical parameters and soil structure are essential prerequisites for achieving effective ecological environment protection and restoration in mining areas. In this study, three-dimensional visualization reconstruction of soil porosity, pore diameter, roundness rate and pore connectivity at different profile depths in subsidence area caused by ultra-thick coal seam mining was conducted by using the soil CT scanning technology. Additionally, a correlation analysis model was established between physical parameters such as soil moisture content, bulk density, and pore structure parameters. The results indicate that: (1) Compared to the non-subsidence area, the number, size, and proportion of soil pores significantly increase in the tension zone, compression zone, and neutral zone, and the pore network and connectivity are extensively interconnected, and the fissure development in the tension zone is most significant, and the soil pores in the subsidence compression zone are concentrated on one side due to the influence of soil deformation. (2) As the depth of the soil profile increases, the level of soil pore development significantly decreases. The large profile depth (40-100 cm) causes a significant decrease in pore development. (3) There is a significant correlation between soil pore structure parameters and soil physical parameters (P = 0.05), a highly significant correlation between soil pore structure parameters and soil moisture content (P = 0.01), and a highly significant correlation between soil texture and soil moisture content (P = 0.01). This research is of great significance for guiding underground production layout and repairing damaged soil.
This manuscript investigated the thermal stability, crystal reconstruction and microstructure evolution of graphite tailing cement mortar subjected to high temperature. Simultaneously, a computational model for heat transfer and degradation considering chemical transformations had been developed by combining multiscale mechanics with the laws of thermodynamics. The results show that 20% graphite tailings can increase the tobermorite crystal content under high temperature and inhibit its transformation into disordered form. Furthermore, the dormant active SiOx in graphite tailing is gradually activated under the action of high temperature, which catalyzes and induces the formation of more belite crystal in graphite tailing cement mortar. Additionally, 40% graphite tailing can promote the generation of anorthite by the induction of high temperature. Finally, a new multi-scale model considering the chemical transformation is established to calculate the hightemperature degradation process of graphite tailing cement mortar.
This study proposes a resolved framework coupling computational fluid dynamics (CFD) with discrete element method (DEM) to simulate the sedimentation of granular sand. Realistic sand particles were reconstructed by spherical harmonic representation combined with the multi-sphere clump method, and a fictitious domain method for irregular clumps was further developed to solve the fluid-particle interaction. This resolved CFD-DEM offers a direct and robust approach for computing real fluid forces on irregular-shaped granular sands, without relying on any empirical drag force models. Initially, the effectiveness and accuracy of the proposed CFD-DEM were validated through a series of single-particle free settling simulations for various ideal-shaped particles. Critical fluid-particle interacting behaviors in terms of drag force and wake structure were mainly investigated and corroborated with experimental data. The study subsequently progressed to simulate the sedimentation processes of various granular sand assemblies composed of realistic-shaped sand particles, utilizing the proposed CFD-DEM. Detailed numerical analyses concentrated on particle-scale mechanics during sedimentation, including settling trajectories and velocities of particles, as well as the coordination and anisotropy of inter-particle contacts. The results and findings gained from this study provide a novel insight into the micro-mechanisms underlying the sedimentation and accumulation process of granular soils in geological environments.
As the interface between frozen and unfrozen soil, the ice front is not only a spatial location concept, but also a potentially dangerous interface where the mechanical properties of soil could change abruptly. Accurately identifying its spatial position is essential for the safe and efficient execution of large-scale frozen soil engineering projects. Electrical capacitance tomography (ECT) is a promising method for the visualization of frozen soil due to its non-invasive nature, low cast, and rapid response. This paper presents the design and optimization of a mobile circular capacitance sensor (MCCS). The MCCS was used to measure frozen soil samples along the depth direction to obtain moisture distribution and three-dimensional images of the ice front. Finally, the experimental results were compared with the simulation results from COMSOL Multiphysics to analyze the deviations. It was found that the fuzzy optimization design based on multi-criteria orthogonal experiments makes the MCCS meet various performance requirements. The average permittivity distribution was proposed to reflect moisture distribution along the depth direction and showed good correlation. Three-dimensional reconstructed images could provide the precise position of the ice front. The simulation results indicate that the MCCS has a low deviation margin in identifying the position of the ice front.