在列表中检索

共检索到 2

Snow algae darken the surface of snow, reducing albedo and accelerating melt. However, the impact of subsurface snow algae (e.g., when cells are covered by recent snowfall) on albedo is unknown. Here, we examined the impact of subsurface snow algae on surface energy absorption by adding up to 2 cm of clean snow to surface algal blooms and measuring reflectivity. Surprisingly, snow algae still absorb significant energy across an array of wavelengths when snow-covered. Furthermore, the scale of this effect correlates with algal cell densities and chlorophyll-a concentrations. Collectively, our results suggest that darkening by subsurface snow algae lowers albedo and thus potentially accelerates snowmelt even when the algae is snow-covered. Impacts of subsurface algae on melt await assessment. This implies that snow algae play a larger role in cryosphere melt than investigations of surface-only reflectance would suggest. IMPORTANCE This study addresses a gap in research by examining the impact of subsurface snow algae on snow albedo, which affects snowmelt rates. Previous studies have focused on visible surface blooms, leaving the effects of hidden algae unquantified. Our findings reveal that snow algae beneath the surface can still absorb energy across various wavelengths, accelerating melt even when not visible to the naked eye. This suggests that spectral remote sensing can detect these hidden algae, although their biomass might be underestimated. Understanding how subsurface snow algae influence albedo and snowmelt is crucial for accurate predictions of meltwater runoff, which impacts alpine ecosystems, glacier health, and water resources. Accurate projections are essential for managing freshwater supplies for agriculture, drinking water, and other vital uses. Thus, further investigation into subsurface snow algae is necessary to improve our understanding of their role in snow albedo reduction and water resource management.

期刊论文 2025-01-14 DOI: 10.1128/mbio.03630-24

A critical comprehension of the impact of snow cover on urban bidirectional reflectance is pivotal for precise assessments of energy budgets, radiative forcing, and urban climate change. This study develops a numerical model that employs the Monte Carlo ray-tracing technique and a snow anisotropic reflectance model (ART) to simulate spectral albedo and bidirectional reflectance, accounting for urban structure and snow anisotropy. Validation using three flat surfaces and MODIS data (snow-free, fresh snow, and melting snow scenarios) revealed minimal errors: the maximum domain-averaged BRDF bias was 0.01% for flat surfaces, and the overall model-MODIS deviation was less than 0.05. The model's performance confirmed its accuracy in reproducing the reflectance spectrum. A thorough investigation of key factors affecting bidirectional reflectance in snow-covered urban canyons ensued, with snow coverage found to be the dominant influence. Urban coverage, building height, and soot pollutant concentration significantly impact visible and infrared reflectance, while snow grain size has the greatest effect on shortwave infrared. The bidirectional reflectance at backward scattering angles (0.5-0.6) at 645 nm is lower than forward scattering (around 0.8) in the principal plane as snow grain size increases. These findings contribute to a deeper understanding of snow-covered urban canyons' reflectance characteristics and facilitate the quantification of radiation interactions, cloud-snow discrimination, and satellite-based retrieval of aerosol and snow parameters.

期刊论文 2024-07-01 DOI: 10.3390/rs16132340
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页