共检索到 3

Poverty and income inequality are problems faced by many countries including China. Since the implementation of Targeted Poverty Alleviation (TPA), absolute poverty has been eradicated, meanwhile, Chinese rural residents' income and inequality have experienced unprecedented new dynamics, but still, very few studies have focused on them. Hence, we attempt to examine the new trends in Chinese farmers' income inequality and to understand its causes during this period. We observe that China's urban-rural income ratio has been shrinking and the urban-rural inequality has been decreasing from 2014 to 2021. The reduction in the Theil index indicates a decrease in the regional inequality of farmers' income as well, and the decline in inter-regional inequality among eight economic zones contributes about 80% to increased equality. These new trends are caused by the fact that, with the TPA, the incomes of rural residents especially that in destitute areas, grew faster than that of urban residents and farmers in prosperous areas. The higher share of non-agricultural industry and agricultural mechanization level have significant positive impact on regional equality of farmers' income, while urban-rural dual structure has significant negative inhibitory effects. The lowest farmers' income and the highest inequality in the Northwest, and the slowest growth in the Northeast deserve more attention in rural Revitalization. From these findings, we propose four policy implications that would be applied to improve Chinese farmers' income equality, govern relative poverty, and achieve common prosperity in the post-poverty era.

期刊论文 2024-08-01 DOI: http://dx.doi.org/10.1016/j.rcar.2024.09.002 ISSN: 2097-1583

Fuel combustion provides basic energy for the society but also produces CO2 and incomplete combustion products that threaten human survival, climate change, and global sustainability. A variety of fuels burned in different facilities expectedly have distinct impacts on climate, which remains to be quantitatively assessed. This study uses updated emission inventories and an earth system model to evaluate absolute and relative contributions in combustion emission-associated climate forcing by fuels, sectors, and regions. We showed that, from 1970 to 2014, coal burned in the energy sector and oil used in the transportation sector contributed comparable energies consumed (24 and 20% of the total) but had distinct climate forcing (1 and 40%, respectively). Globally, coal burned for energy production had negative impacts on climate forcing but positive effects in the residential sector. In many developing countries, coal combustion in the energy sector had negative radiative forcing (RF) per unit energy consumed due to insufficient controls on sulfur and scattering aerosol levels, but oils in the transportation sector had high positive RF values. These results had important implications on the energy transition and emission reduction actions in response to climate change. Distinct climate efficiencies of energies and the spatial heterogeneity implied differentiated energy utilization strategies and pollution control policies by region and sector.

期刊论文 2023-02-14 DOI: 10.1021/acs.est.2c08958 ISSN: 0013-936X

Energy is vital to human society but significantly contributes to the deterioration of environmental quality and the global issue of climate change. Biomass and fossil fuels are important energy sources but have distinct pollutant emission characteristics during the burning process. This study aimed at attributing radiative forcing of climate forcers, including greenhouse gases but also short-lived climate pollutants, from the burning of fossil and biomass fuels, and the spatiotemporal characteristics. We found that air pollutant emissions from the burning process of biofuel and fossil fuels induced RFs of 68.2 +/- 36.8 mW m(-2) and 840 +/- 225 mW m(-2), respectively. The relatively contribution of biomass burning emissions was 7.6% of that from both fossil and biofuel combustion processes, while its contribution in energy supply was 11%. These relative contributions varied obviously across different regions. The per unit energy consumption of biomass fuel in the developed regions, such as North America (0.57 +/- 0.33 mW m(-2)/10(7)TJ) and Western Europe (0.98 +/- 0.79 mW m(-2)/10(7)TJ), had higher impacts of combustion emission related RFs compared to that of developing regions, like China (0.40 & PLUSMN; 0.26 mW m(-2)/10(7)TJ), and South and South-East Asia (0.31 +/- 0.71 mW m(-2)/10(7)TJ) where low efficiency biomass burning in residential sector produced significant amounts of organic matter that had a cooling effect. Note that the study only evaluated fuel combustion emission related RFs, and those associated with the production of fuels and land use change should be studied later in promoting a comprehensive understanding on the climate impacts of biomass utilization.

期刊论文 2022-08-01 DOI: 10.1016/j.envpol.2022.119378 ISSN: 0269-7491
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页