共检索到 53

BackgroundBiochar is widely recognized for its capacity to capture and store carbon in soil attributed to its stable structure. However, in most field studies examining the effects of biochar application on soil respiration, the impact of rainfall events on the experimental outcomes has not been taken into account. To address the existing gap in this research field, we conducted a one-year study on soil respiration in an urban camphor forest and collected the data of soil respiration, soil temperature, soil moisture, and the rainfall events closest to the soil respiration monitoring time. We specifically examined how different stages of rainfall events influenced soil respiration in relation to biochar application.ResultsThis study found that the annual average soil respiration rate increased with the doses of biochar application, and the soil respiration rate under the biochar application at the dose of 45 t/ha showed a significant rise. The stages of rainfall events, rainfall amount, and the interaction effect of the two, and biochar doses significantly affected soil respiration. The parameters in the regression model for soil respiration, soil temperature and moisture varied with the different stages of rainfall events and the doses of biochar application. The biochar application eliminated the significant effect of soil moisture on soil respiration during one day after rainfall events. The significant correlation between soil moisture and the temperature sensitivity of soil respiration (Q10) was eliminated by biochar application, both during one day after rainfall events and more than eight days after rainfall events.ConclusionsOur findings indicated that the rice straw biochar application has a short-term positive effect on soil respiration in urban camphor forests. The rainfall events affect the field soil respiration monitored in the biochar applications, possibly by affecting the soil respiration response to soil temperature and moisture under different doses of biochar application. The impact of rainfall events on soil respiration in biochar application experiments should be considered in future forest monitoring management and practice.

期刊论文 2025-01-02 DOI: 10.1186/s13717-024-00571-z

Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO2 fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2 uptake to be suppressed by both drivers depending on habitat. CO2 uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO2 source strength. In moist habitats, grubbing decreased GEP and ER by similar to 55%, while warming increased them by similar to 35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO2 uptake and warming led to a twofold increase in late summer CO2 source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO2 sink strength by 70%. One-year CO2-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2 uptake started occurring above similar to 70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO2 uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2 fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.

期刊论文 2025-01-01 DOI: 10.1002/ecy.4498 ISSN: 0012-9658

The response of soils to extreme weather events will become increasingly important in the future as more frequent and severe floods and droughts are expected to subject soils to drying and rewetting cycles as a result of climate change. These extreme events will be experienced against a backdrop of overall warming. Farmers are adopting cover cropping as a sustainable management practice to increase soil organic matter and benefit soil health. Cover crops may also increase the resilience of soils to help mitigate the impacts of climate change. We examined the legacy of warming and cover crops on the response of soil microbial function to repeated drying and rewetting cycles. We introduced open-top chambers to warm the soil surface of a field plot experiment in which cover crops (single-species monocultures and 4-species polycultures) were grown over the summer after harvest and before planting autumn sown cash crops in a cereal rotation. Soil samples were collected from warmed and ambient areas of the experimental plots in spring, before harvesting the cereal crop. Warming significantly increased, and cover crops significantly decreased, the abundance of genes encoding fungal beta-glucosidase. We quantified respiration (a measure of soil microbial function) with high-frequency CO2 flux measurements after 0, 1, 2, 4 or 8 wet/dry cycles imposed in the laboratory and the addition of barley grass powder substrate at a rate of 10 mg g-1 soil. We observed lower cumulative substrate-induced respiration in soils previously planted with cover crop mixtures than expected from the average of the same species grown in monoculture. Repeated drying and rewetting cycles increased the cumulative substrate-induced respiration rate observed, suggesting that repeated perturbations selected for a community adapted to processing the barley shoot powder more quickly. When we calculated the cumulative respiration after 8 wet/dry cycles, relative to cumulative respiration after 0 wet/dry cycles (which we infer represents the extent to which microbial communities adapted to repeated drying and rewetting cycles), our data revealed that the legacy of warming significantly reduced soil microbial community adaptation, but the legacy of cover crops significantly increased, soil microbial community adaptation. This adaptation of the soil microbial community was positively correlated with the concentration of water-extractable organic carbon in the soils before imposing the drying and rewetting cycles and/or adding the substrate. We conclude that cover crops may enhance the ability of the soil microbial community to adapt to drought events and mitigate the impact of warming, possibly due to the provision of labile organic carbon for the synthesis of osmolytes which then prime the decomposition of labile plant material upon rewetting.

期刊论文 2025-01-01 DOI: 10.1111/ejss.70044 ISSN: 1351-0754

The soil moisture active passive (SMAP) satellite mission distributes a product of CO2 flux estimates (SPL4CMDL) derived from a terrestrial carbon flux model, in which SMAP brightness temperatures are assimilated to update soil moisture (SM) and constrain the carbon cyclemodeling. While the SPL4CMDL product has demonstrated promising performance across the continental USA and Australia, a detailed assessment over the arctic and subarctic zones (ASZ) is still missing. In this study, SPL4CMDL net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (R-E) are evaluated against measurements from 37 eddy covariance towers deployed over the ASZ, spanning from 2015 to 2022. The assessment indicates that the NEE unbiased root-mean-square error falls within the targeted accuracy of 1.6 gC.m(-2).d(-1), as defined for the SPL4CMDL product. However, modeled GPP and R-E are overestimated at the beginning of the growing season over evergreen needleleaf forests and shrublands, while being underestimated over grasslands. Discrepancies are also found in the annual net CO2 budgets. SM appears to have a minimal influence on the GPP and R-E modeling, suggesting that ASZ vegetation is rarely subjected to hydric stress, which contradicts some recent studies. These results highlight the need for further carbon cycle process understanding and model refinements to improve the SPL4CMDL CO2 flux estimatesover the ASZ.

期刊论文 2025-01-01 DOI: 10.1109/JSTARS.2025.3555850 ISSN: 1939-1404

Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9-387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 degrees C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 degrees C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 degrees C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.

期刊论文 2024-12-01 DOI: 10.1016/j.geoderma.2024.117108 ISSN: 0016-7061

Pesticides including insecticides are often applied to prevent distortion posed by plant insect pests. However, the application of these chemicals detrimentally affected the non-target organisms including soil biota. Fipronil (FIP), a broad-spectrum insecticide, is extensively used to control pests across the globe. The frequent usage calls for attention regarding risk assessment of undesirable effects on non-target microorganisms. Here, laboratory-based experiments were conducted to assess the effect of FIP on plant-beneficial bacteria (PBB); Rhizobium leguminosarum (Acc. No. PQ578652), Azotobacter salinestris (Acc. No. PQ578649) and Serratia marcescens (Acc. No. PQ578651). PBB synthesized growth regulating substances were negatively affected by increasing fipronil concentrations. For instance, at 100 mu g FIPmL-1, a decrease in indole-3-acetic acid (IAA) synthesis by bacterial strains followed the order: A. salinestris (95.6%) S. marcescens (91.6%) > R. leguminosarum (87%). Also, exposure of bacteria cells to FIP hindered the growth and morphology of PBB observed as distortion, cracking, and aberrant structure under scanning electron microscopy (SEM). Moreover, FIP-treated and propidium iodide (PI)-stained bacterial cells displayed an insecticide dose-dependent increase in cellular permeability as observed under a confocal laser microscope (CLSM). Colony counts (log(10) CFU mL(-1)) and growth of A. salinestris was completely inhibited at 150 mu g FIPmL-1. The surface adhering ability (biofilm formation) of PBB was also disrupted/inhibited in a FIP dose-related manner. The respiration loss due to FIP was coupled with a reduction in population size. Fipronil at 150 mu gmL(-1) decreased cellular respiration in A. salinestris (72%) S. marcescens (53%) and R. leguminosarum (85%). Additionally, biomarker enzymes; lactate dehydrogenase (LDH), lipid peroxidation (LPO), and oxidative stress (catalase; CAT) induced by FIP represented significant (p <= 0.05) toxicity towards PBB strains. Conclusively, fipronil suggests a toxic effect that emphasizes their careful monitoring in soils before application and their optimum addition in the soil-plant system. It is high time to prepare both target-specific and slow-released agrochemical formulation for crop protection with concurrent safeguarding of soils.

期刊论文 2024-12-01 DOI: 10.1007/s11274-024-04203-8 ISSN: 0959-3993

Global climate warming has led to the deepening of the active layer of permafrost on the Tibetan Plateau, further triggering thermal subsidence phenomena, which have profound effects on the carbon cycle of regional ecosystems. This study conducted warming (W) and thermal subsidence (RR) control experiments using an Open-Top Chamber (OTC) device in the river source wetlands of the Qinghai Lake basin. The aim was to assess the impacts of warming and thermal subsidence on soil temperature, volumetric water content, biomass, microbial diversity, and soil respiration (both autotrophic and heterotrophic respiration). The results indicate that warming significantly increased soil temperature, especially during the colder seasons, and thermal subsidence treatment further exacerbated this effect. Soil volumetric water content significantly decreased under thermal subsidence, with the RRW treatment having the most pronounced impact on moisture. Additionally, a microbial diversity analysis revealed that warming promoted bacterial richness in the surface soil, while thermal subsidence suppressed fungal community diversity. Soil respiration rates exhibited a unimodal curve during the growing season. Warming treatment significantly reduced autotrophic respiration rates, while thermal subsidence inhibited heterotrophic respiration. Further analysis indicated that under thermal subsidence treatment, soil respiration was most sensitive to temperature changes, with a Q10 value reaching 7.39, reflecting a strong response to climate warming. In summary, this study provides new scientific evidence for understanding the response mechanisms of soil carbon cycling in Tibetan Plateau wetlands to climate warming.

期刊论文 2024-11-01 DOI: 10.3390/biology13110863

Pesticides including insecticides are applied in agricultural practices to control insect pests. However, their excessive usage often poses a severe threat to the growth, physiology, and biochemistry of plants. Here, responses of chickpea and greengram seedlings exposed to three fipronil (FIP) concentrations i. e. 100 (1x), 200 (2x) and 300 (3x) mu g mL- 1 was evaluated under in vitro. Among doses, 3x had a greater negative impact on germination attributes, root-shoot elongation, vigor indices, length ratios, and survival of seedlings. Besides, the morphological distortion in root tips, oxidative stress generation, and cellular death in fipronil-supplemented root seedlings were observed under scanning electron (SEM) and confocal laser scanning (CLSM), respectively. A significant (p <= 0.05) and pronounced upsurge in plant stressor metabolites such as proline, malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) content, and antioxidants enzymes in plant seedlings further confirmed the fipronil toxicity. In addition, a concentration-dependent decrease in respiration efficiency (RE) and ATP content in FIP-treated seedlings was observed. Reduced mitotic index (MI) and numerous chromosomal anomalies (CAs) in root meristematic cells of seedlings are a clear indication of insecticide-induced cytotoxicity. Furthermore, a dose-dependent increase in DNA damage in root meristematic cells of greengram revealed the genotoxic potential of fipronil. Conclusively, fipronil suggested phyto and cyto-genotoxic effects that emphasize their careful monitoring in soils before application and their optimum addition in soil-plant systems. It is high time to prepare both target-specific and slow-released agrochemical formulations for crop protection with concurrent safeguarding of the soil.

期刊论文 2024-11-01 DOI: 10.1016/j.pestbp.2024.106135 ISSN: 0048-3575

Transforming organic waste, such as pruning branches into compost and extracting water, can limit the levels of harmful substances in organic waste and decrease the spread of soil-borne diseases, critical for promoting sustainable agriculture. This study employed a pot experiment to examine the influence of water extraction from pruned branches or its compost on root respiration, mitochondrial structure, antioxidant system, and photosynthetic carbon metabolism. The findings demonstrated that the high concentration of pruning branches debris water extract (ST10) exhibited elevated ROS content in the roots and leaves, causing membrane lipid peroxidation, damaging mitochondrial structure, and inhibiting root growth. However, low-concentration pruned branch debris water extract (ST1) did not produce this phenomenon in seedlings. However, pruned branch debris can have its toxicity reduced after composting, and the extracted water can be used as a fast and efficient organic liquid fertilizer. The extracted water (CT1 and CT10) obtained from the composting of pruned branch debris increased the levels of SOD, POD, CAT, and APX and reduced O2 center dot- and H2O2 production in the seedling roots. It also maintained the integrity of the mitochondria. Moreover, the CT1 and CT10 treatments elevated the total root respiration, increased the content of ATP and organic acid in the roots, and promoted root growth. Correspondingly, the CT10 treatment increased the photosynthetic rate and the content of soluble sugars in leaves and roots, offering adequate substrates for respiration, while the ST10 treatment decreased the content of soluble sugars in roots and leaves. These findings indicate that the composting of crushed branches can lower the toxicity of leaching solutions, promote plant growth, and enhance sustainable agricultural development.

期刊论文 2024-11-01 DOI: 10.1016/j.scienta.2024.113546 ISSN: 0304-4238

Wildland fire is increasingly recognized as a driver of bioaerosol emissions, but the effects that smoke-emitted microbes have on the diversity and community assembly patterns of the habitats where they are deposited remain unknown. In this study, we examined whether microbes aerosolized by biomass burning smoke detectably impact the composition and function of soil sinks using lab-based mesocosm experiments. Soils either containing the native microbial community or presterilized by gamma-irradiation were inundated with various doses of smoke from native tallgrass prairie grasses. Smoke-inundated, gamma-irradiated soils exhibited significantly higher respiration rates than both smoke-inundated, native soils and gamma-irradiated soils exposed to ambient air only. Microbial communities in gamma-irradiated soils were significantly different between smoke-treated and control soils, which supports the hypothesis that wildland fire smoke can act as a dispersal agent. Community compositions differed based on smoke dose, incubation time, and soil type. Concentrations of phosphate and microbial biomass carbon and nitrogen together with pH were significant predictors of community composition. Source tracking analysis attributed smoke as contributing nearly 30% of the taxa found in smoke-inundated, gamma-irradiated soils, suggesting smoke may play a role in the recovery of microbial communities in similar damaged soils. Our findings demonstrate that short-distance microbial dispersal by biomass burning smoke can influence the assembly processes of microbial communities in soils and has implications for a broad range of subjects including agriculture, restoration, plant disease, and biodiversity.

期刊论文 2024-10-30 DOI: 10.1093/ismejo/wrae203 ISSN: 1751-7362
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共53条,6页