共检索到 5

As an ornamentally and medicinally worthy plant, Hosta plantaginea (Lam.) Aschers. has the adapted capacity to survive cold temperate monsoon climates in Northeastern China. However, its use is limited by the soil alkalization of urban gardens. Our pre-experiment found that Hosta 'Golden Cadet' has the potential to be alkali-tolerant. Hence, tissue-cultured seedlings of Hosta 'Golden Cadet' were used as experimental material. Its related growth, physiology, and transcripts were examined to reveal the molecular mechanism of Hosta plantaginea in response to alkali stress. The results show that the development of Hosta 'Golden Cadet' was affected by alkali stress. In comparison with the control, malondialdehyde (MDA) content increased by 4.28-fold at the 24th hour, superoxide dismutase (SOD) activity increased by 49% at the 6th hour, and peroxidase (POD) activity and soluble sugar (SS) content increased by 67% and 30% at the 12th hour, respectively. The RNA-seq analysis revealed that Hosta 'Golden Cadet' gene expressions at 0 h, 6 h, 12 h, 21 h and 48 h differed after 200 mmol/L NaHCO3 treatment. During 48 h under alkali stress, 2366 differentially expressed genes were found. The transcription factors MYB, AP2/ERF, and WRKY were activated in differentially expressed genes. The KEGG analysis found that phytohormone signaling pathways, starch and sucrose metabolism, and phenylpropane production were activated in Hosta 'Golden Cadet' in response to alkali stress. In summary, Hosta 'Golden Cadet' can reduce membrane damage by improving osmoregulation and antioxidant capacity, increase sucrose and starch metabolism, and regulate phenylpropane biosynthesis by activating transcription factors and inducing related phytohormone signaling, mitigating the effects of alkali toxicity. These findings guide an investigation into the mechanism of alkali tolerance in Hosta plants, screening alkali tolerance genes, and selecting and breeding novel alkali-tolerant Hosta plantaginea cultivars.

期刊论文 2025-02-01 DOI: 10.3390/plants14040593 ISSN: 2223-7747

With the intensifying global warming trend, extreme heat and drought are becoming more frequent, seriously impacting potato yield and quality. To maintain sustainable potato production, it is necessary to breed new potato varieties that are adaptable to environmental changes and tolerant to adversity. Despite its importance, there is a significant gap in research focused on the potential mechanisms of potato resistance to abiotic stresses like drought and high temperatures. This article provides a comprehensive review of the recent research available in academic databases according to subject keywords about potato drought tolerance and high temperature tolerance with a view to providing an important theoretical basis for the study of potato stress mechanism and the selection and breeding of potato varieties with drought and high-temperature resistance. The suitable relative soil moisture content for potato growth and development is 55% to 85%, and the suitable temperature is 15 degrees C to 25 degrees C. The growth and development of potato plants under drought and high-temperature stress conditions are inhibited, and plant morphology is altered, which affects the process of potato stolon formation, tuberization and expansion, ultimately leading to a significant reduction in potato tuber yields and a remarkable degradation of the market grade of tubers, the specific gravity of tubers, and the processing quality of tubers. In addition, stress also adversely affects potato physiological and biochemical characteristics, such as reduction in root diameter and leaf area, decrease in net photosynthetic rate of leaves, production of reactive oxygen species (ROS), and increase in membrane lipid peroxidation. In addition, various types of genes and transcription factors are involved in the response to drought and heat at the molecular level in potato. This paper illustrates the effects of stress on potato growth and development and the molecular mechanisms of potato response to adversity in detail, which is intended to reduce the damage caused by drought and high temperature to potato in the context of global warming and frequent occurrence of extreme weather to ensure potato yield and quality and to further safeguard food security.

期刊论文 2024-08-01 DOI: 10.3390/horticulturae10080827

Reservoir-induced earthquakes (RIEs) occur frequently in the Three Gorges Reservoir Area (TGRA) and the rock mass strength of the hydro-fluctuation belt (HFB) deteriorates severely due to the reservoir-induced seismic loads. Three models of typical bedded rock slopes (BRSs), i.e. gently (GIS), moderately (MIS), and steeply (SIS) inclined slopes, were proposed according to field investigations. The dynamic response mechanism and stability of the BRSs, affected by the rock mass deterioration of the HFB, were investigated by the shaking table test and the universal distinct element code (UDEC) simulation. Specifically, the amplification coefficient of the peak ground acceleration (PGA) of the slope was gradually attenuated under multiple seismic loads, and the acceleration response showed obvious surface effect and elevation effect in the horizontal and vertical directions, respectively. The S-type cubic function and steep-rise type exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves (low seismic waves) and high seismic waves, respectively. According to the dynamic responses of the acceleration, cumulative displacement, rock pressure, pore water pressure, damping ratio, natural frequency, stability coefficient, and sliding velocity of the slope, the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized, and the numerical and experimental results were compared. Considering the dynamic effects of the slope height (SH), slope angle (SA), bedding plane thickness (BPT), dip angle of the bedding plane (DABP), dynamic load amplitude (DLA), dynamic load frequency (DLF), height of water level of the hydro-fluctuation belt (HWLHFB), degradation range of the hydro-fluctuation belt (DRHFB), and degradation shape of the hydro-fluctuation belt (DSHFB), the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method (OAM) was DLA > DRHFB > SA > SH > DLF > HWLHFB > DSHFB > DABP > BPT. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-08-01 DOI: 10.1016/j.jrmge.2023.09.0431674-7755 ISSN: 1674-7755

This study investigates the response mechanisms between soil water-heat transfer and environmental factors during freeze-thaw periods and establishes soil water-heat transfer functions in a cold region. Based on field-measured values of soil temperature and liquid-phase water content collected at an automatic weather station in the black soil area of the Songnen plain, the influence of the cumulative negative temperature on the soil freezing depth was analyzed under different snow cover conditions. A gray correlation analysis method was used to screen the environmental factors and determine those with the most influence on changes in soil water-heat transfer processes. Then, soil water-heat transfer functions were established between the selected environmental factors and soil temperature, the liquid-phase soil water content. The results showed that during the freezing and thawing period, snow cover hindered the effects of the cumulative temperature on the thickness of the frozen soil layer. Additionally, the time of occurrence of the maximum freezing depth under natural snow (NS), compacted snow (CS) and thickened snow (TS) treatments was delayed 7, 12 and 20 days, respectively, compared with that under bare land (BL). The correlation between atmospheric temperature, total radiation and soil temperature was relatively high, and this effect decreased with the increasing of snow cover. The main driving factors of variations in the liquid-phase water content were ambient humidity and saturated vapor pressure, and the effects of these factors decreased with increasing soil depth and snow cover thickness, similarly. In the active frozen layer, the correlation coefficients of the soil water-heat transfer functions were relatively high, and the function model can be tested by the significance (P < 0.05) test. However, the R-2 values of functions below the active layer were relatively low, and the soil water-heat transfer in the area below the active layer was less affected by the environment. This study reveals the characteristics of energy transfer and mass transfer in a composite system of atmospheric factors and frozen soil under snow cover conditions. It provides a reference for accurate forecasting and the efficient utilization of soil water and heat resources in cold and arid regions.

期刊论文 2018-09-01 DOI: 10.1016/j.geoderma.2018.03.022 ISSN: 0016-7061

Alpine vegetation plays a crucial role in global carbon cycle. Snow cover is an essential component of alpine land cover and shows high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NOVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among different biomes, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidence between vegetation growth and snow cover phenology, and changes in snow cover should be also considered when analyzing alpine vegetation growth dynamics in future,

期刊论文 2018-06-15 DOI: 10.1016/j.agrformet.2018.03.004 ISSN: 0168-1923
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页