Resource storage is a critical component of plant life history. While the storage of nonstructural carbohydrates in wood has been studied extensively, the multiple functions of mineral nutrient storage have received much less attention. Here, we highlight the size of wood nutrient pools, a primary determinant of whole-plant nutrient use efficiency, and a substantial fraction of ecosystem nutrient budgets, particularly tropical forests. Wood nutrient concentrations also show exceptional interspecific variation, even among co-occurring plant species, yet how they align with other plant functional traits and fit into existing trait economic spectra is unclear. We review the chemical forms and location of nutrient pools in bark and sapwood, and the evidence that nutrient remobilization from sapwood is associated with mast reproduction, seasonal leaf flush, and the capacity to resprout following damage. We also emphasize the role wood nutrients are likely to play in determining decomposition rates. Given the magnitude of wood nutrient stocks, and the importance of tissue stoichiometry to forest productivity, a key unresolved question is whether investment in wood nutrients is a relatively fixed trait, or conversely whether under global change plants will adjust nutrient allocation to wood depending on carbon gain and nutrient supply.
The initial outbreak of Xylella fastidiosa subsp. pauca (Xfp) on olive groves in Salento (Apulia, Italy) dates back to the years 2008 and 2009 when extensive twig and branch diebacks were observed in the area of Gallipoli area (province of Lecce). Subsequently, the bacterium also spread northwards to other areas of Apulia. In many cases, entire olive groves, also including the centennial ones, died. After the crown collapse, in many cases, it has been observed that the suckers are resprouting at the base of the trunk. After two to three years, such suckers usually died as well. However, during the last four to five years, in the first Xfp outbreak area, a complete restoration of the crown of the Xfp-susceptible cultivars Ogliarola salentina and Cellina di Nard & ograve; has been noticed. Such trees or olive groves also started to yield again. To monitor this tree resilience phenomenon, together with local non-profit organizations, a survey in the province of Lecce has been carried out to find olive groves for which any curative or agronomical practices have been applied since the bacterium outbreak. Resilient olive groves are scattered in many municipalities all over the province of Lecce. The phenomenon regards both young and adult olive groves and also includes some centennial trees. In many cases, the trees are yielding fruits, and farmers started to cultivate them again. Olive resilience in Salento is already being studied and can represent a significant opportunity to restore the local and valuable olive germplasm.
AimIncreased tree mortality linked to droughts and fires is occurring across temperate regions globally. Vegetation recovery has been widely reported; however, less is known about how disturbance may alter forests structurally and functionally across environmental gradients. We examined whether dry forests growing on low-fertility soils were more resilient to coupled extreme drought and severe fire owing to lower tree mortality rates, higher resprouting success and persistence of juveniles relative to wetter forests on more fertile soils.LocationFire-tolerant eucalypt forests of temperate southeastern Australia.Time period2020-2023.Major taxa studiedEucalyptus, Corymbia, Angophora.MethodsDemographic surveys of tree mortality and regeneration in all combinations of dry/wet forest, fertile/less fertile substrates exposed to extreme drought and fire were conducted. We used Bayesian regression modelling to compare tree mortality, diameter, response traits, population structure and occurrence of fire scars between substrates/forest types.ResultsOverall mortality (20%-33%) and topkill (34%-41%) were within historically reported ranges for various forests and soil types. However, we observed an atypical trend of increased mortality and topkill in the largest trees, particularly when they had structural damage from past fires. Trees in wet forests on more fertile soils had the highest levels of mortality. Numbers of persistent resprouting juveniles were highest in dry forests on low-fertility soils. Dry forests growing on low-fertility soils appear more resilient to compound disturbances due to lower rates of mortality and higher rates of juvenile persistence. Wet forests on more fertile soils may experience greater demographic change due to higher mortality of small and large trees.Main conclusionsMesic forests on relatively fertile soils were found to be at relatively high risk of demographic change from compound disturbances. Combined, fire and drought are likely to reduce the number of large trees in affected areas, with consequences for forest carbon cycling and storage.