To enhance the path-tracking accuracy of unmanned articulated road roller (UARR) operating on low-adhesion, slippery surfaces, this paper proposes a hierarchical cascaded control (HCC) architecture integrated with real-time ground adhesion coefficient estimation. Addressing the complex nonlinear dynamics between the two rigid bodies of the vehicle and its interaction with the ground, an upper-layer nonlinear model predictive controller (NMPC) is designed. This layer, based on a 4-degree-of-freedom (4-DOF) dynamic model, calculates the required steering torque using position and heading errors. The lower layer employs a second-order sliding mode controller (SOSMC) to precisely track the steering torque and output the corresponding steering wheel angle. To accommodate the anisotropic and time-varying nature of slippery surfaces, a strong-tracking unscented Kalman filter (ST-UKF) observer is introduced for ground adhesion coefficient estimation. By dynamically adjusting the covariance matrix, the observer reduces reliance on historical data while increasing the weight of new data, significantly improving real-time estimation accuracy. The estimated adhesion coefficient is fed back to the upper-layer NMPC, enhancing the control system's adaptability and robustness under slippery conditions. The HCC is validated through simulation and real-vehicle experiments and compared with LQR and PID controllers. The results demonstrate that HCC achieves the fastest response time and smallest steady-state error on both dry and slippery gravel soil surfaces. Under slippery conditions, while control performance decreases compared to dry surfaces, incorporating ground adhesion coefficient observation reduces steady-state error by 20.62%.