This study investigates the microhardness and geometric degradation mechanisms of interfacial transition zones (ITZs) in recycled aggregate concrete (RAC) exposed to saline soil attack, focusing on the influence of supplementary cementitious materials (SCMs). Ten RAC mixtures incorporating fly ash (FA), granulated blast furnace slag (GBFS), silica fume (SF), and metakaolin (MK) at 10 %, 15 %, and 20 % replacement ratios were subjected to 180 dry-wet cycles in a 7.5 %MgSO4-7.5 %Na2SO4-5 %NaCl solution. Key results reveal that ITZ's microhardness and geometric degradation decreases with exposure depth but intensifies with prolonged dry-wet cycles. The FAGBFS synergistically enhances ITZ microhardness while minimizing geometric deterioration, with ITZ's width and porosity reduced to 67.6-69.0 mu m and 25.83 %, respectively. In contrast, FA-SF and FA-MK exacerbate microhardness degradation, increasing porosity and amplifying microcrack coalescence. FA-GBFS mitigates the diffusion-leaching of aggressive/original ions and suppresses the formation of corrosion products, thereby inhibiting the initiation and propagation of microcracks. In contrast, FA-SF and FA-MK promote the formation of ettringite/gypsum and crystallization bloedite/glauberite, which facilitates the formation of trunk-limb-twig cracks.
A novel thermo-hydro-mechanical-chemical (THMC) coupling model grounded in thermodynamic dissipation theory was established to unravel the intricate behavior of unsaturated sulfate-saline soils during cooling crystallization. The model quantifies energy transfer and dissipation during crystallization and introduces a method to calculate the amount of sulfate crystallization. It intricately captures the interdependencies between crystallization, pore water pressure, crystallization pressure and volumetric expansion, while also accounting for the dynamic feedback of latent heat from phase transitions on heat conduction. The reliability of the model was validated through experimental data. Numerical simulations explored the effects of cooling paths, thermal conductivity, initial salt content and initial porosity on the crystallization behavior and mechanical properties. The model provides theoretical support for optimizing the engineering design and facility maintenance of sulfatesaline soils.
Volume changes in soil caused by freeze-thaw cycles can affect the shear performance of the saline soil-geotextile interface. To investigate this issue, the study examined changes in shear strength, deformation characteristics, and failure modes of the saline soil-geotextile interface under different numbers of freeze-thaw cycles. The experimental results indicate that with the increase in freeze-thaw cycles, the shear stiffness of the interface initially increases and then decreases, demonstrating the reduction in elasticity and resistance to deformation caused by freeze-thaw cycles. And the enhancement of normal stress can effectively increase the density of the soil and the adhesion at the interface, thereby improving shear stiffness. Meanwhile, the salt content in the soil also significantly impacts the mechanical properties, with notable changes in the dynamic characteristics of the interface as the salt content varies. Furthermore, after freeze-thaw actions, the soil becomes loose, reduces in integrity, features uneven surfaces, and sees increased internal porosity leading to slip surfaces. Trend analysis from this study provides new insights into the failure mechanisms at the saline soil-geotextile interface.
The fundamental cause of frost heave and salt expansion of saline soil is the water condensation and salt crystallization during the freezing process. Therefore, controlling the water and salt content is crucial to inhibit the expansion behaviors of saline soil. Recently, electroosmosis has been demonstrated to accelerate soil dewatering by driving hydrated cations. However, its efficiency in mitigating the salt-induced freezing damages of saline soil requires further improvement. In this study, a series of comparative experiments were conducted to investigate the synergistic effects of electroosmosis and calcium chloride (CaCl2) on inhibiting the deformation of sodium sulfate saline soil. The results demonstrated that electroosmosis combined with CaCl2 dramatically increased the cumulative drainage volume by improving soil conductivity. Under the external electric field, excess Na+ and SO42- ions migrated towards the cathode and anode, respectively, with a portion being removed from the soil via electroosmotic flow. These processes collectively contributed to a significant reduction in the crystallization-induced deformation of saline soil. Additionally, abundant Ca2+ ions migrated to cathode under the electric force and reacted with OH- ions or soluble silicate to form cementing substances, significantly improving the mechanical strength and freeze-thaw resistance of the soil. Among all electrochemical treatment groups, the soil sample treated with 10 % CaCl2 exhibited optimal performance, with a 71 % increase in drainage volume, a 180 similar to 443 % enhancement in shear strength, and a 65.1 % reduction in freezing deformation. However, excessive addition of CaCl2 resulted in the degradation of soil strength, microstructure, and freeze-thaw resistance.
Sulfate saline soil is considered as an inferior subgrade construction material that is highly susceptible to damage from salt heaving and dissolution. Polyurethane/water glass (PU/WG) is an efficient grouting material widely used in underground engineering; however, its application in saline soil reinforcement has not yet been reported. In this study, PU/WG was used to solidify sulfate-saline soils. The influence of the dry density, curing agent ratio, and salt content on the strength was evaluated. The mechanical properties of the solidified soil were determined by conducting uniaxial compression strength tests, and crack development was detected using acoustic emission technology. The reinforcing mechanism was revealed by scanning electron microscopy tests and mercury intrusion porosimetry. The results indicated that the peak stress, peak strain, and ultimate strain increased with increasing dry density and PU/WG content, whereas they decreased with increasing salt content. The relationship between the peak stress, density, and PU/WG can be described using linear functions. The relationship between the peak stress and salt content can be described by a second-order polynomial function. The larger the dry density and the higher the PU/WG content, the steeper the stress-strain curves and the lower the ductility. Further, the higher the salt content, the higher the ductility. Soil with a higher dry density, more PU/WG, and less salt content exhibited higher brittleness. Thus, PU/WG can fill in the original disorganized and large pores, thereby increasing the complexity of the internal pore structure via organic-inorganic gel reactions.
The engineering diseases caused by seasonal sulfate saline soil in Hexi region of Gansu Province seriously affect the local infrastructure construction and operation maintenance. To address this issue, this study explored the thermal mass transfer law, pore fluid phase transition, soil deformation and microstructure of unsaturated sulfate saline soil under the open system. Firstly, based on the theories of porous media mechanics and continuum mechanics, combined with the conservation equations of mass, energy and momentum and considering the phase transition of pore fluid, a multi-field coupled mathematical model of hydro-thermal-salt-gas-mechanical for unsaturated sulfate saline soil was established. Secondly, basic unknown variables such as pore water pressure, concentration, temperature, porosity, and displacement were selected to perform numerical simulation analysis on the equation system by Comsol Multiphysics finite element method. Finally, a comparative analysis was conducted between the on-site measured data and the numerical simulation results. The results show that the water and salt phase transitions caused by temperature change could lead to soil salt heave and frost heave, alter the pore structure of the soil, and reduce the compactness of the soil, ultimately being reflected in the changes in soil porosity. The influence of external temperature on soil temperature gradually decreases with increasing depth, and the sensitivity of frozen areas to external temperature is much higher than that of unfrozen areas. This study not only enriches the theoretical results of thermal mass transfer law and deformation of unsaturated sulfate saline soil, but also provides practical guidance for the prevention and control of engineering diseases in local sulfate saline soil.
This study investigates the corrosion behaviour of grounding down leads in transmission towers subjected to wet-dry cycle in saline soils of Northwest China through accelerated corrosion experiments. Using saline soil from the Hexi Corridor, rich in chloride and sulphate ions, corrosion rates were assessed via weight loss, polarisation curves, scanning electron microscopy and X-ray diffraction analyses. Results demonstrate that wet-dry cycle significantly accelerates corrosion due to enhanced chloride ion diffusion and corrosion kinetics, with the highest average weight loss rate (3.08%) and corrosion current density (0.3526 mA/cm(2)). Scanning electron microscopy analysis revealed extensive cracking in corrosion product layers under cyclic wet-dry conditions, weakening their protective capability and further intensifying corrosion. The primary corrosion products identified were FeO and Fe2O3, consistent with field samples, indicating that the corrosion mechanism remains unchanged under accelerated conditions. This study provides novel insights into how cyclic moisture conditions affect grounding materials in saline environments, guiding material selection, maintenance strategies and site selection to improve transmission line reliability and safety.
The wind resistance of transmission towers is not only affected by wind load, but also by service environment. This study uses the world's second Ultra High Voltage Direct Current transmission project - Xinjiang & PLUSMN;800 kV Tianzhong Line UHV DC transmission project - to develop a fragility analysis method for transmission towers in saline soil under wind loads to investigate the change of wind loads fragility of transmission towers in long-term service in the saline soil environment. It develops a tower-line-foundation (3 T-2L-F) system model considering soil-structure interaction. In addition, this research addresses the durability damage of the transmission tower using field investigation data and material degradation models and analyzes the influence of various durability damage components on the natural vibration mode of the basic of 3 T-2L-F model. Finally, it builds the structure-wind samples utilizing a Latin hypercube sampling method and explores the time histories analysis, the pushover analyses, and the time-varying fragility analyses considering the uncertainty of materials and wind loads. The findings indicate that the 3 T-2L-F model accurately simulates the actual situation of the transmission tower. The fragility of a transmission tower subjected to wind loads is proportional to the degree of material damage and the strength of wind loads.
Salt-frost heaving of canal foundation saline soils is the primary cause of damage to the lining structures of water conveyance channels in the Hetao Irrigation District, China. Chemical solidification of saline soils can mitigate frost heave; however, application studies exploring the salt-frost heave resistance of saline soils solidified through the synergistic use of multiple industrial solid wastes in the Hetao remain limited. This study employs a sustainable solidifying material composed of slag, fly ash, coal gangue, coal-based metakaolin, carbide slag, and potassium silicate activator. The optimal mix ratio was determined using Response Surface Methodology (RSM). Unidirectional freezing tests evaluated the effects of solidification material content, curing period, and salt content on salt-frost heave development. Unconfined compressive strength tests assessed salt-frost heave durability of high-salinity solidified saline soils. Microstructural characteristics were analyzed using Scanning Electron Microscopy (SEM), Mercury Intrusion Porosimetry (MIP), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TG) to investigate resistance mechanisms. Results indicated that the industrial waste materials exhibited synergistic effects in an alkaline environment, with the optimal mix ratio of slag, fly ash, coal gangue, coal-based metakaolin, carbide slag, and potassium silicate at 21:25:33:8:7:6. Increasing solidified material content and curing time significantly enhanced salt-frost heave resistance, as evidenced by improved freezing temperature stability, deeper freezing front migration, and reduced salt-frost heave rate. The optimal group (35 % solidifier, 7 days curing) showed a 5.53 degrees C increase in stable freezing temperature, a 3.78 cm upward migration of the freezing front, and a 3.94 % reduction in salt-frost heave rate. Salt-frost heave durability of highsalinity soils improved post-solidification, with a gradual decrease in the degradation of unconfined compressive strength, achieving a minimum weakening of 21.13 %. Hydration products C-S-H, C-A-H, and AFt filled voids between soil particles, restricting water and salt migration. Hydration of industrial wastes reduced free water and SO24 content, decreasing water-salt crystallization and mitigating salt-frost heave. The findings provide an engineering reference for in-situ treatment of salt-frost heaving in saline soils of water conveyance channels in the Hetao Irrigation District.
To address the issue of poor phytoremediation in Cd-contaminated saline soil caused by the biotoxicity of Cdsalinity, we constructed a symbiotic system of arbuscular mycorrhizal fungi (AMF) and the hyperaccumulator Solanum nigrum, and systematically elucidated the response strategies of Solanum nigrum and the enhancement mechanism of AMF for plant tolerance through cytological, physiological, and transcriptomic methods. The findings showed that Cd-salinity stress had synergistic aggravated Cd/Na enrichment, ultrastructural damage, photosynthetic inhibition, water loss, and reactive oxygen species (ROS) accumulation in plants. In response to the heterogeneity of Cd/salinity stress, AMF smartly regulated the Cd/salinity tolerance of host plants: AMF decreased intercellular CO2 concentration (Ci) under Cd stress to alleviate non-stomatal limitation induced by Cd, but increased Ci under salinity stress to alleviate the stomatal limitation induced by salinity; the role of AMF in strengthening the osmoregulation system was more prominent under salinity stress, thereby alleviated the more severe osmotic imbalance induced by salinity. AMF also enhanced signal transduction to consolidate resistance defense, upregulated antioxidant genes to activate antioxidant enzymes, and strengthened the AsAGSH cycle to mitigate oxidative damage. The enhancement of tolerance improved plant growth and Cd enrichment. Under high Cd-high salinity combined stress, Cd concentrations in shoots and roots increased by 14.28 % and 38.85 %, respectively, and the biomass also increased by over 30.00 % after AMF inoculation. In summary, inoculation with AMF serves as an effective and sustainable phytoremediation enhancement strategy that improves the host plants' stress resistance through multiple pathways, thereby increasing the phytoremediation potential.