Miscanthus is a promising perennial lignocellulosic crop for biomass production. To avoid competing with arable land used for food crops to promote carbon neutrality, cultivating Miscanthus on marginal land, especially in saline soils in China, is a recommended strategy. However, the adaptability of Miscanthus species in saline soil remains largely unknown. In this study, a total of 354 genotypes, including Miscanthus sinensis, Miscanthus floridulus, Miscanthus sacchariflorus, Miscanthus lutarioriparius and interspecific species hybrids derived from M. sinensis and M. lutarioriparius, were evaluated under different planting times (May and August), salinity levels (low and moderate) and pest damage assessment by Helicoverpa armigera in the Yellow River Delta (YRD), in China. The significant effects of planting time on the adaptability of Miscanthus were observed. Planting in May in the YRD, Miscanthus had a lower establishment survival rate (28.76%) and overwintering rate (72.31%), but a dry weight higher than that of planting in August. In contrast, planting in August in the YRD had a very high establishment survival rate (91.14%) and overwintering rate (80.65%), which indicated August was the optimal month for planting Miscanthus in the YRD, while May could be suitable for screening salinity tolerance in Miscanthus. In addition, using the overall adaptability score calculated by establishment survival, overwintering ability, key agronomic traits and pest damage assessments to evaluate all genotypes in this study indicated that the adaptability of M. lutarioriparius was superior to other species. However, M. lutarioriparius is more sensitive to pest damage than others. Furthermore, interspecific hybrids in Miscanthus exhibited outstanding biomass production and adaptability in this region, indicating that creating hybrids would be the best breeding strategy for marginal lands. These results provide an important theoretical basis for the development of Miscanthus in saline soil in the YRD, China.
Background and AimsGlobal climate change is intensifying the co-occurrence of abiotic stresses, particularly combined waterlogging/submergence and salinity, posing severe and escalating threats to woody plant ecosystems critical for biodiversity, carbon storage, and soil stabilization. Despite extensive research on herbaceous species, understanding of woody plant responses remains fragmented and disproportionately focused on specific groups like mangroves and halophytes. This review aims to synthesize and critically evaluate the current state of knowledge on the integrated physiological, morphological, and molecular responses of diverse woody plants to this challenging combined stress scenario.MethodsA comprehensive synthesis and analysis of existing scientific literature was conducted. This involved systematically examining empirical studies, comparative analyses, and theoretical frameworks related to the responses of various woody plant species to the concurrent application of waterlogging/submergence and salinity stress, drawing comparisons to single-stress effects and herbaceous model systems.ResultsThe majority of woody plants exhibit synergistic, more detrimental effects under combined stress compared to either stress alone. Key manifestations include significantly heightened inhibition of photosynthesis, severe disruption of ion (particularly Na+ and Cl-) homeostasis leading to toxicity, and exacerbated oxidative damage. Woody plants utilize core stress tolerance mechanisms analogous to herbaceous species, such as ion exclusion/compartmentalization, activation of enzymatic and non-enzymatic antioxidant systems, and osmotic adjustment via compatible solute accumulation. Crucially, they also deploy distinctive structural and long-term adaptive strategies, including the development of specialized organs (pneumatophores, hypertrophic lenticels), deep root systems for accessing less saline groundwater, and physiological acclimation processes leveraging their perennial nature. Nevertheless, critical knowledge gaps persist, particularly concerning the underlying molecular signaling networks, the mechanisms of long-term adaptation over years/decades, and the specific responses of mature trees in natural ecosystems.ConclusionSignificant gaps hinder a comprehensive understanding of how woody plants cope with combined waterlogging/submergence and salinity stress. To advance fundamental knowledge and inform effective ecological restoration strategies for climate-resilient landscapes, future research must prioritize the application of integrated multi-omics approaches (genomics, transcriptomics, proteomics, metabolomics), the development of high-efficiency genetic transformation techniques for recalcitrant woody species, the deployment of advanced high-throughput phenotyping platforms, and crucially, long-term field-based studies simulating realistic future stress scenarios.
Addressing saline soil issues while ensuring agricultural productivity requires innovative technologies. This study investigated the impact of adding an innovative remediation preparation, specifically leguminous compost containing 50 g (LCT+CS-1), 100 g (LCT+CS-2), or 150 g of corn silk kg-1 (LCT+CS-3), to saline soil (ECe = 11.05 dS m-1) on soil characteristics and fenugreek plant performance during the 2022/2023 and 2023/2024 seasons. All organic supplementations significantly improved soil organic matter content, nutrient levels, and enzyme activities (urease, acid and alkaline phosphatase, and catalase) while reducing soil pH and Na+ content compared to the control. These results reflected decreased Na+ content, oxidative stress indicators (hydrogen peroxide and superoxide radicals), and oxidative damage (leaf electrolyte leakage and malondialdehyde levels) in fenugreek plants. On the other hand, leaf integrity (chlorophyll and carotenoid contents, membrane stability index, and relative water content) and nutrient contents improved. Furthermore, K+/Na+ ratio, osmoregulatory compounds (soluble sugars and proline), antioxidant levels (glutathione, ascorbate, phenols, and flavonoids), and antioxidant activity increased notably. Thus, notable increases in plant growth and yield traits and seed quality (trigonelline, nicotinic acid, total phenols, and flavonoids) were achieved. LCT+CS-2 was the most effective treatment for saline soil (ECe = 11.05 dS m-1), alleviating salinity effects and improving fenugreek growth, yield, and seed quality traits.
Soil salinization threatens global agriculture, reducing crop productivity and food security. Developing strategies to improve salt tolerance is crucial for sustainable agriculture. This study examines the role of organic fertilizer in mitigating salt stress in rice (Oryza sativa L.) by integrating NDVI and metabolomics. Using salt-sensitive (19X) and salt-tolerant (HHZ) cultivars, we aimed to (1) evaluate changes in NDVI and metabolite content under salt stress, (2) assess the regulatory effects of organic fertilizer, and (3) identify key metabolites involved in stress response and fertilizer-induced regulation. Under salt stress, survival rate of the 19X plants dropped to 6%, while HHZ maintained 38%, with organic fertilizer increasing survival rate to 25% in 19X and 66% in HHZ. NDVI values declined sharply in 19X (from 0.56 to <0.25) but remained stable in HHZ (similar to 0.56), showing a strong correlation with survival rate (R-2 = 0.87, p < 0.01). NDVI provided a dynamic, non-destructive assessment of rice health, offering a faster and more precise evaluation of salt tolerance than survival rate analysis. Metabolomic analysis identified 12 key salt-tolerant metabolites, including citric acid, which is well recognized for regulating salt tolerance. HTPA, pipecolic acid, maleamic acid, and myristoleic acid have previously been reported but require further study. Additionally, seven novel salt-tolerant metabolites-tridecylic acid, propentofylline, octadeca penten-3-one, 14,16-dihydroxy-benzoxacyclotetradecine-dione, cyclopentadecanolide, HpODE, and (+/-)8,9-DiHETE-were discovered, warranting further investigation. Organic fertilizer alleviated salt stress through distinct metabolic mechanisms in each cultivar. In 19X, it enhanced antioxidant defenses and energy metabolism, mitigating oxidative damage and improving fatty acid metabolism. In contrast, HHZ primarily benefitted from improved membrane stability and ion homeostasis, reducing lipid peroxidation and oxidative stress. These findings primarily support the identification and screening of salt-tolerant rice cultivars while also highlighting the need for cultivar-specific fertilization strategies to optimize stress resilience and crop performance. Based on the correlation analysis, 26 out of 53 differential metabolites were significantly correlated with NDVI, confirming a strong association between NDVI shifts and key metabolic changes in response to salt stress and organic fertilizer application. By integrating NDVI and metabolomics, this study provides a refined method for evaluating salt stress responses, capturing early NDVI changes and key salinity stress biomarkers. This approach may prove valuable for application in salt-tolerant variety screening, precision agriculture, and sustainable farming, contributing to scientific strategies for future crop improvement and agricultural resilience.
5-Aminolevulinic acid (5-ALA) is a plant growth regulator, but its effect on alfalfa (Medicago sativa L.) tolerance to salinity stress is limited. The objective of this study was to investigate the impact of foliar application of 5-ALA on alleviating NaCl-induced salinity stress in alfalfa. Four seedlings' treatments in soil culture, including control (CK), 0.1 mmol L-1 5-ALA, 150 mmol L-1 NaCl, and 150 mmol L-1 NaCl + 0.1 mmol L-1 5-ALA, were conducted for measurement using methods at morphological, physiological and ultrastructural levels. The results showed that salinity stress inhibited leaf size, leaf number, shoot height, and biomass. Similarly, salinity stress decreased photosynthesis by degrading pigments, reducing photosynthetic gas exchange parameters, increasing stomatal closure and damaging leaf ultrastructure. Additionally, salinity-induced disruptions in ion homeostasis, osmotic balance, and oxidative equilibrium exacerbated plant stress. However, foliar application of 5-ALA proved instrumental in mitigating these detrimental effects. Notably, 5-ALA treatment bolstered growth metrics, enhanced pigment biosynthesis, improved photosynthetic performance, facilitated stomatal regulation, and preserved leaf morphology. Moreover, 5-ALA treatment effectively modulated ion transport, osmotic regulation, and redox balance by attenuating Na+ accumulation, reactive oxygen species production, and lipid peroxidation, while bolstering cellular membrane integrity, osmoprotective mechanisms, and antioxidant defenses. Correlation and principal component analyses underscored the interplay and synergistic effects of these pathways. 5-ALA has a multifaceted role in mitigating salinity stress in alfalfa, and this study underscores the efficacy of 5-ALA as a proactive strategy for enhancing salinity tolerance, growth, and productivity in alfalfa cultivation.
Background Bermudagrass (Cynodon dactylon) has a long history as an excellent forage grass, and salt stress will inhibit its growth and development. In order to minimize the damage, it is necessary to continuously develop innovative technologies and management strategies. Results This study evaluated the salt tolerance of new Bermudagrass strains 'FB2019R101' and 'FB2019R105' compared to commercial varieties 'Wrangler' and 'A12359' under simulated soil salinity conditions through seawater irrigation. Through correlation analysis of growth, physiological, and nutritional indicators, and principal component analysis, core indicators and weights for salt tolerance evaluation were identified. The salt-tolerant varieties were 'FB2019R101' and 'FB2019R105'. Under salinity stress, the plants of Bermudagrass varieties with salt tolerance suffered less damage as a whole, which could better regulate the osmotic balance inside and outside cells, accumulate more nutrients and have stronger ability to resist salt damage. The expression level of salt-tolerant variety CdCINV1, CdSPS1, CdSUS5, and CdSWEET6 was up-regulated under salt stress. CdCINV1, CdSPS1, CdSUS5 can promote the transformation of sucrose into glucose and fructose in Bermudagrass under salt stress, and CdSWEET6 can promote the accumulation of fructose. Conclusions 'FB2019R101' and 'FB2019R105' exhibited higher salt tolerance, with minimal impact on their biomass, physiological, and nutritional indicators under salt stress. The comprehensive evaluation revealed a salt tolerance ranking of 'FB2019R105' > 'FB2019R101' > 'Wrangler' > 'A12359'. This study provides significant reference for the bioremediation of coastal saline soils and promotes research on the application of Bermudagrass under salt stress conditions. CdCINV1, CdSPS1, CdSUS5, and CdSWEET6 can improve the salt tolerance of plants by regulating the changes of carbohydrates.
Salinity stress significantly impacts agricultural productivity by damaging key plant mechanisms like photosynthesis, osmotic balance, and enzymatic activity. Withania somnifera (L.) Dunal, valued in Ayurveda for its anti-carcinogenic withanolides such as withaferin A, faces reduced yields due to soil salinity in India. Sustainable, eco-friendly methods are needed to mitigate salt stress and improve economic yield, as conventional approaches are environmentally unsustainable for long-term productivity. This study hypothesizes that plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) could effectively reduce salinity stress and enhance withaferin A production. The study evaluates the effects of nitrogen-fixing bacteria (Azotobacter chroococcum), phosphate-solubilizing bacteria (Bacillus amyloliquefaciens), potassium-solubilizing bacteria (Enterobacter esburiae), and a mycorrhizal consortium under saline (4.5 dS m-1) and non-saline conditions. The 4.5 dS m-1 sodium chloride salinity dose significantly (p < 0.05) reduced growth attributes and increased malondialdehyde (p < 0.001) (MDA) content, electrolytic leakage (p < 0.0001) (EL), and sodium-potassium ratio (p < 0.001) by 113.38%, 79.51%, and 114.85%, respectively, compared to control. Among all the biofertilizer treatments, AMF inoculation most effectively improved (p < 0.05) growth parameters and decreased MDA (p < 0.01), EL (p < 0.001), and sodium-potassium ratio (p < 0.0001) by 69.99%, 21.42%, and 66.96%, respectively. Under salinity stress, AMF inoculation maximally increased (p < 0.0001) withaferin A by 49.07%, while PGPB increased (p < 0.05) it upto 34.54%. The findings suggest that AMF and PGPB alleviate salinity stress by reducing lipid peroxidation and electrolyte leakage, regulating the sodium-potassium ratio, and enhancing withanolide production in W. somnifera. Thus, microbial inoculation offers a sustainable, eco-friendly approach to improving the growth and yield of secondary metabolites in W. somnifera in salt-affected regions.
Soybean (Glycine max L.) is an important oilseed crop but is known to be sensitive to environmental challenges. Soil salinity is known to hamper soybean growth and yield significantly. Through this investigation, we tried to uncover the important insights into physiological, biochemical, and molecular responses and adaptive strategies of two Indian soybean cultivars - MAUS-47 (salt-tolerant) and Gujosoy-2 (salt-sensitive) to salinity stress. In a completely randomized block design experiment, plants of both cultivars were subjected to control (no salt treatment) and salt treatment (100 mM NaCl) at the trifoliate stage (10 plants of each cultivar per treatment with three biological replicates). Salinity stress generated reactive oxygen species (ROS), both free and non-free-radical forms, which seemingly triggered cell death as revealed by spectrophotometric histochemical analyses with significant varietal differences. Cultivars showed differential ROS-scavenging (enzymatic/non- antioxidative machinery) capabilities. The functioning of ion-accumulating channels differed between the two cultivars, with the sensitive cultivar exhibiting a higher intake of Na+ ions, leading to the replacement of essential K+, P+, and Mg2+ ions and thus ionic imbalances. This ion imbalance could be attributed to the yield damage, growth, and developmental delays in the sensitive cultivar under salt stress conditions. The expression pattern of 5 key genes representing salt-overly-sensitive (SOS) pathways, transcription factors, and antioxidant enzymes was revealed by qRT-PCR analysis. Differential expressions were observed for the genes corresponding to Na+/H+ antiporter (SOS1), transcription factors (WRKY and MYB), nitrate reductase-1, and superoxide dismutase (Cu-Zn). These findings thus shed light on the intricate mechanisms underlying salt stress responses in soybean and how tolerant and sensitive cultivars show differential strategies, offering valuable insights for developing salt-tolerant varieties and improved agricultural practices.
BackgroundGlobally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.0 and 3%) as an organic biostimulant applied sequentially as a foliar spray on faba bean (Vicia faba L.) grown in cadmium (Cd)-contaminated saline soil conditions [Cd = 4.71 (mg kg- 1 soil) and ECe = 7.84 (dS m- 1)]. Plants not receive any treatment and sprayed with H2O were considered controls. The experimental treatments were laid out in strip plot in a randomized complete block design replicated thrice, where the LRE and Mt were considered as vertical and horizontal strips, respectively. Growth characteristics, photosynthetic pigments, nutrient uptake, physiology and metabolic responses, anatomical features, and yield were assessed.ResultsCadmium (Cd) and salinity-induced stress significantly altered leaf integrity, photosynthetic efficiency, total soluble sugars (TSS), free proline (FPro), total phenolic, DPPH, and total soluble proteins (TSP), non-enzymatic and enzymatic antioxidants, growth characteristics and yield-related traits. However, the application of LRE + Mt considerably improved these negative effects, with higher improvements were observed due to application of LRE + Mt100. Application of LRE + Mt significantly reduced hydrogen peroxide (H2O2) accumulation, lipid peroxidation and Cd content in leaves and seeds, all of which had increased due to Cd stress. Application of LRE + Mt significantly mitigated the Cd-induced oxidative damage by increasing the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, in parallel with enhanced ascorbate and reducing glutathione content. Exogenous application of LRE + Mt significantly increased osmolyte content, including FPro, TSS, and total phenols and mitigated Cd-induced reduction to considerable levels.ConclusionsOur findings showed that LRE + Mt increased V. faba plants' morphological, physiological, and biochemical properties, reducing Cd stress toxicity, and promoting sustainable agricultural practices.Clinical trial numberNot applicable.
Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching. L-arginine, an amino acid, is crucial for plant defense mechanisms, forming proline, polyamines, and nitric oxide, which regulate biological activities and prevent oxidative damage. Mango fruit waste biochar enhances soil fertility and water retention, thereby enhancing fruit development and yield. This study investigates the effects of combining IAA and AN as amendments to fenugreek, with and without MFWB. Four treatments (control, 2mM IAA, 250 mg/L AN, and 250 mg/L AN + 2mM IAA) study were conducted in four replications using a completely randomized design. Results demonstrate that the 250 mg/L AN + 2mM IAA with MFWB treatment led to a significant rise in fenugreek plant length (30.26%), plant fresh weight (36.37%), and plant dry weight (15.78%) over the control under salinity stress. There was a notable increase in chlorophyll a (5.13%), chlorophyll b (14.06%), total chlorophyll (7.79%), and shoot N, P, K from the control under salinity stress also showing the potential of 250 mg/L AN + 2mM IAA with MFWB. In conclusion, applying 250 mg/L AN + 2mM IAA with MFWB is a strategy for alleviating salinity stress in fenugreeks.