共检索到 2

Ecosystem carbon use efficiency (CUE) is a key indicator of an ecosystem's capacity to function as a carbon sink. While previous studies have predominantly focused on how climate and resource availability affect CUE through physiological processes during the growing season, the role of canopy structure in regulating carbon and energy exchange, especially its interactions with winter climate processes and nitrogen use efficiency (NUE) in shaping ecosystem CUE in semi-arid grasslands, remains insufficiently understood. Here, we conducted a 5-year snow manipulation experiment in a temperate grassland to investigate the effects of deepened snow on ecosystem CUE. We measured ecosystem carbon fluxes, soil nitrogen concentration, species biomass, plants' nitrogen concentration, canopy height and cover and species composition. We found that deepened snow increased soil nitrogen availability, while the concurrent rise in soil moisture facilitated nutrient acquisition and utilization. Together, these changes supported greater biomass accumulation per unit of nitrogen uptake, thereby enhancing NUE. In addition, deepened snow favoured the dominance of C3 grasses, which generally exhibit higher NUE and greater height than C3 forbs, providing a second pathway that further elevated community-level NUE. The enhanced NUE, through both physiological efficiency and compositional shifts, promoted biomass production and facilitated the development of larger canopy volumes. Larger canopy volumes under deepened snow increased gross primary production through improved light interception, while the associated increase in autotrophic maintenance respiration was moderated by higher NUE. Besides, denser canopies reduced understorey temperatures throughout the day, particularly at night, thereby suppressing heterotrophic respiration. Ultimately, deepened snow increased ecosystem CUE by enhancing carbon uptake while limiting respiratory carbon losses. Synthesis. These findings demonstrated the crucial role of biophysical processes associated with canopy structure and NUE in regulating ecosystem CUE, which has been largely overlooked in previous studies. We also highlight the importance of winter processes in shaping carbon sequestration dynamics and their potential to modulate future grassland responses to climate change.

期刊论文 2026-01-02 DOI: 10.1111/1365-2745.70229 ISSN: 0022-0477

Global warming has greatly altered winter snowfall patterns, and there is a trend towards increasing winter snow in semi-arid regions in China. Winter snowfall is an important source of water during early spring in these water-limited ecosystems, and it can also affect nutrient supply. However, we know little about how changes in winter snowfall will affect ecosystem productivity and plant community structure during the growing season. Here, we conducted a 5-year winter snow manipulation experiment in a temperate grassland in Inner Mongolia. We measured ecosystem carbon flux from 2014 to 2018 and plant biomass and species composition from 2015 to 2018. We found that soil moisture increased under deepened winter snow in early growing season, particularly in deeper soil layers. Deepened snow increased the net ecosystem exchange of CO2 (NEE) and reduced intra- and inter-annual variation in NEE. Deepened snow did not affect aboveground plant biomass (AGB) but significantly increased root biomass. This suggested that the enhanced NEE was allocated to the belowground, which improved water acquisition and thus contributed to greater stability in NEE in deep-snow plots. Interestingly, the AGB of grasses in the control plots declined over time, resulting in a shift towards a forb-dominated system. Similar declines in grass AGB were also observed at three other locations in the region over the same time frame and are attributed to 4 years of below-average precipitation during the growing season. By contrast, grass AGB was stabilized under deepened winter snow and plant community composition remained unchanged. Hence, our study demonstrates that increased winter snowfall may stabilize arid grassland systems by reducing resource competition, promoting coexistence between plant functional groups, which ultimately mitigates the impacts of chronic drought during the growing season.

期刊论文 2020-05-01 DOI: 10.1111/gcb.15051 ISSN: 1354-1013
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页