共检索到 60

The Tibetan Railway has introduced pressures on the fragile grassland ecosystems of the Tibetan Plateau. However, the impact of the railway on the carbon sequestration remains unclear, as existing studies primarily focus on in-situ vegetation observations. In this study, we extracted the start and end of the growing season (SOS, EOS) and maximum daily GPP (GPPmax) along the railway corridor from the satellite-derived Gross Primary Productivity (GPP) data, and quantified the extent and intensity of the railway's disturbance on these indicators. We further employed the Statistical Model of Integrated Phenology and Physiology (SMIPP) to translate these disturbances into annual cumulative GPP (GPPann). Results show that Tibetan Railway significantly influences grassland within 50-meters, causing earlier SOS (0.1086 d m-1), delayed EOS (0.0646 d m-1), and reduced GPPmax (0.0069 gC m-2 d-1 m-1) as the distance to the railway gets closer. The advanced SOS and delayed EOS contributed gains of 28.82 and 104.26 MgC y-1, but reduction in GPPmax accounted for a loss of 2952.79 MgC y-1. Railway-induced phenology-physiology trade-off causes GPPann loss of 2819.71 MgC y-1. This study reveals Tibetan Railway's impact on grassland carbon cycling, offering insights for grassland conservation and sustainable transportation infrastructure projects.

期刊论文 2025-12-31 DOI: 10.1080/17538947.2025.2554326 ISSN: 1753-8947

Tidal wetlands provide critical ecosystem functions for coastal communities including flood protection, water filtration, carbon sequestration and aquatic nursery habitat. However, New York City's salt marshes, including our study site at Pelham Bay Park's Turtle Cove, are rapidly disappearing due to accelerating relative sea-level (RSL) rise and coastal development. Field research, mapping and satellite imagery reveal significant loss of this similar to 10 hectare (ha) wetland, as perturbations from human activity prevent marsh landward migration, impede tidal flows and threaten marsh survival. We extracted three sediment cores and conducted 20 m transects across a gradient of disturbed marsh areas. We present the analyses of land-use change, X-ray fluorescence (XRF), loss on ignition (LOI), stable carbon isotopes (delta 13C), foraminifera, and accelerator mass spectrometry (AMS) radiocarbon dating of terrestrial macrofossils to examine the past and to inform future conditions for this rapidly eroding wetland. Moreover, we reconstruct sea level over a millennium to analyze changes in marsh plant communities in response to RSL rise and coastal development. We found that between 1974 and 2018 CE, similar to 65% of marsh disappeared at a rate of 1.5% yr-1 or 800 m2 yr-1. The marsh loss coincided with increasing RSL rates of 3.5 mm yr-1 from 1958-1975 CE to 6.7 mm yr-1 from 1999-2024 CE. Meanwhile, developed areas expanded 568 m2 yr-1 from 1985-2023 CE, replacing wetland areas and disrupting hydrologic processes with hardened shorelines. Marsh loss resulted in the release of soil organic carbon stored over many centuries and a concerning amount of lead (Pb) into Long Island Sound, presenting risks to public health and wildlife. Culvert assessments demonstrated that tidal restriction by built structures contributed to rising tide levels comparable to RSL rise over the past century, which likely exacerbated marsh erosion. Lastly, tidal prism reductions caused enough accumulation of heavy metals to significantly alter peat chemical composition for a century. This study improves our understanding of compounded stressors that prevent the capacity of salt marshes to with stand anthropogenic impacts. Ultimately, our findings inform an adaptive management of these threatened ecosystems in their struggle to keep pace with climate change and urbanization.

期刊论文 2025-12-17 DOI: 10.3389/fenvs.2025.1688420

BackgroundAccelerated glacial retreat driven by climate change is rapidly reshaping alpine and polar environments, exposing deglaciated terrains that serve as critical sites for microbial colonization and early ecosystem development. These newly exposed substrates provide a unique setting for studying primary microbial succession, the onset of soil formation, and the initiation of biogeochemical cycles, particularly carbon cycling. Microbial communities, including bacteria, archaea, fungi, algae, and viruses, play pivotal roles in regulating elemental fluxes and establishing foundational ecosystem processes in these nascent landscapes.ResultsRecent studies highlight substantial shifts in microbial community structure and function across different glacial forefields and cryospheric habitats. Microbial assemblages display pronounced spatial heterogeneity shaped by physicochemical gradients and successional age. Functional analyses reveal diverse metabolic pathways involved in carbon fixation, organic matter transformation, and long-term carbon storage. Additionally, viral populations emerge as influential regulators of microbial metabolism and potential archives of past environmental conditions. The assembly of these communities is influenced by a combination of abiotic factors, dispersal mechanisms, and local adaptation, with cascading effects on carbon fluxes and nutrient dynamics.ConclusionsMicrobial processes in deglaciated environments are central to early biogeochemical transformations and represent key drivers of carbon sequestration in retreating glacial landscapes. Understanding the ecological roles, functional diversity, and climate sensitivity of these microbial communities is essential for projecting biogeochemical and climate system feedbacks in the context of ongoing glacial loss. Integrating microbial ecology into Earth system models will enhance predictions of carbon dynamics and inform conservation and climate mitigation strategies in polar and alpine regions.

期刊论文 2025-12-13 DOI: 10.1186/s12302-025-01297-1 ISSN: 2190-4707

The source area of the Yangtze River (SAYR), part of the Tibetan Plateau, is an ecologically fragile alpine region sensitive to climate change. Current research has predominantly examined hydrological and ecological responses as isolated systems, failing to address the coupled mechanisms through which permafrost degradation mediates water-carbon interactions. In this study, we used a fully coupled eco-hydrological model that integrates permafrost processes, along with multi-source remote sensing data, experimental monitoring, and machine learning, to quantify the water retention and carbon sequestration capacity over the past 20 years. The region was categorized into three risk zones based on changes in soil moisture, net ecosystem productivity (NEP), and dissolved organic carbon (DOC) fluxes in streams. We evaluated eight factors, including precipitation, temperature, vegetation phenology and cover, and their contributions to changes of water retention and carbon sequestration using an interpretable machine learning approach. Results show that the central and eastern regions of the study area face the highest risk of declining water retention and carbon sequestration capacity. The changes of temperatures and precipitation have led to depletion of soil water and carbon reserves. This depletion raises concerns about the potential shift from a carbon sink to a carbon source considering land-to-river carbon loss. Our study provides critical insights into the water and carbon flux dynamics and offers valuable guidance for water resource and ecological management in alpine river systems.

期刊论文 2025-12-01 DOI: 10.1016/j.watres.2025.124461 ISSN: 0043-1354

Revealing regional-scale differences in microbial community structure and metabolic strategies across different land use types and soil types and how these differences relate to soil carbon (C) cycling function is crucial for understanding the mechanisms of soil organic carbon (SOC) sequestration in agroecosystems. However, our understanding of these knowledge still remains unclear. Here, we employed metagenomic methods to explore differences in microbial community structure, functional potential, and ecological strategies in calcareous soil and red soil, as well as the relationships among these factors and SOC stocks. The results showed that the bacterial absolute abundance and diversity were higher and the fungal absolute abundance and diversity were lower in calcareous soil than in red soil. This may be attributed to stochastic processes dominated the assembly of bacterial and fungal communities in calcareous soil and red soil, respectively. This in turn was closely related to soil pH and Ca2 + content. Linear discriminant analysis showed that genes related to microbial growth and reproduction (e.g., amino acid biosynthesis, central carbon metabolism, and membrane transport) were enriched in calcareous soil. While genes related to stress tolerance (e.g., bacterial chemotaxis, DNA damage repair, biofilm formation) were enriched in red soil. The great difference in soil properties between calcareous soil and red soil may be the cause of this result. Compared with red soil, the higher soil pH, SOC, and calcium and magnesium content in calcareous soil increased the bacterial absolute abundance and diversity, thus increasing the SOC sequestration potential of microorganisms, but also increased the decomposition of organic carbon by fungi, thus increasing the SOC loss potential. However, the bacterial absolute abundance and diversity were much higher than that of fungi. Therefore, soil carbon sequestration potential was still greater than its loss potential in karst agroecosystems. Agricultural disturbance intensity may be the main factor affecting these relationships. Overall, these findings advance our understanding of how soil microbial metabolic processes are related to SOC sequestration.

期刊论文 2025-09-01 DOI: 10.1016/j.still.2025.106562 ISSN: 0167-1987

Global climate change exerts profound effects on snow cover, with consequential impacts on microbial activities and the stability of soil organic carbon (SOC) within aggregates. Northern peatlands are significant carbon reservoirs, playing a critical role in mitigating climate change. However, the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood. Here, an in-situ field experiment manipulating snow conditions (i.e., snow removal and snow cover) was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates (> 2, 0.25-2, and < 0.25 mm) in a peatland of Northeast China. The results showed that snow removal significantly increased the SOC content and stability within aggregates. Compared to the soils with snow cover, snow removal resulted in decreased soil average temperatures in the topsoil (0-30 cm depth) and subsoil (30-60 cm depth) (by 1.48 and 1.34 degrees C, respectively) and increased freeze-thaw cycles (by 11 cycles), consequently decreasing the stability of aggregates in the topsoil and subsoil (by 23.68% and 6.85%, respectively). Furthermore, more recalcitrant carbon and enhanced SOC stability were present in microaggregates (< 0.25 mm) at two soil depths. Moreover, reductions in bacterial diversity and network stability were observed in response to snow removal. Structural equation modeling analysis demonstrated that snow removal indirectly promoted (P < 0.01) SOC stability by regulating carbon to nitrogen (C:N) ratio within aggregates. Overall, our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.

期刊论文 2025-08-01 DOI: 10.1016/j.pedsph.2024.05.011 ISSN: 1002-0160

A novel MgO-mixing column was developed for deep soft soil improvement, utilizing in-situ deep mixing of MgO with soil followed by carbonation and solidification via captured CO2 injection. Its low carbon footprint and rapid reinforcement potential make it promising for ground improvement. However, a simple and cost-effective quality assessment method is lacking. This study evaluated the electrical properties of MgO-mixing columns using electrical resistivity measurements, exploring relationships between resistivity parameters and column properties such as saturation, strength, modulus, CO2 sequestration and uniformity. Microscopic analyses were conducted to elucidate the mechanisms underlying carbonation, solidification, and electrical property changes. The life cycle assessment (LCA) was performed to assess its carbon reduction benefits and energy consumption. The findings reveal that the electrical resistivity decreases rapidly with increasing test frequency, remaining constant at 100 kHz, with the average electrical resistivity being slightly higher in the upper compared to the lower section. Additionally, electrical resistivity follows a power-law decrease with increasing saturation. Both electrical resistivity and the average formation factor exhibit strong positive correlations with unconfined compressive strength (UCS) and deformation modulus, enabling predictive assessments. Furthermore, CO2 sequestration in MgO-mixing columns is positively correlated with electrical resistivity, and the average anisotropy coefficient of 0.96 indicates good column uniformity. Microstructural analyses identify nesquehonite, dypingite/hydromagnesite, and magnesite as significant contributors to strength enhancement. Depth-related changes in electrical resistivity parameters arise from variations in the amount and distribution of carbonation products, which differently impede current flow. LCA highlights the significant low-carbon advantages of MgOmixing columns

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04707 ISSN: 2214-5095

Microplastics (MPs) are an emerging global change factor with the potential to affect key agroecosystem services. Yet, MPs enter soils with highly variable properties (e.g., type, shape, size, concentration, and aging duration), reflecting their heterogeneous chemical compositions and diverse sources. The impacts of MPs with such varying properties on agroecosystem services remain poorly understood, limiting effective risk assessment and mitigation efforts. We synthesized 6315 global observations to assess the broad impacts of microplastic properties on key agroecosystem services, including crop productivity and physiology, soil carbon sequestration, nutrient retention, water regulation, and soil physical and microbial properties. MPs generally caused significant declines in aboveground productivity, crop physiology, water-holding capacity, and nutrient retention. However, the direction and magnitude of these effects varied considerably depending on the specific properties of MPs. The hazards posed by MPs to aboveground productivity, antioxidant systems, and root activity were size- and dose-dependent, with larger particles at higher concentrations inducing greater damage. Prolonged microplastic exposure impaired crop photosynthesis and soil nutrient retention, but most other ecosystem services (e.g., belowground productivity, antioxidant systems, and root activity) showed gradual recovery over time. Fiber-shaped MPs positively influenced crop aboveground and belowground productivity and soil carbon sequestration, potentially due to their linear configuration enhancing soil aggregation and connectivity. Polymer type emerged as the most prominent driver of the complex and unpredictable responses of agroecosystem services to MPs, with biodegradable polymers unexpectedly exerting larger negative effects on crop productivity, root activity, photosynthesis, and soil nutrient retention than other polymers. This synthesis underscores the critical role of microplastic properties in determining their ecological impacts, providing essential insights for property-specific risk assessment and mitigation strategies to address microplastic pollution in agroecosystems.

期刊论文 2025-06-01 DOI: 10.1111/gcb.70269 ISSN: 1354-1013

Mechanical alterations in shale formations due to exposure to water-based fracturing fluids and supercritical carbon dioxide (ScCO2) significantly affect the performance of shale gas exploration and CO2 geo-sequestration. In this study, a hydrothermal (HT) reaction system was set up to treat Longmaxi shale samples of varying mineralogies (carbonate-, clay-, and quartz-rich) with different fluids, i.e. deionized (DI) water, 2% potassium chloride (KCl) solution, and ScCO2 under HT conditions expected in shale formation. Statistical micro-indentation was conducted to characterize the mechanical property alterations caused by the shale-fluid interactions. An in situ morphological and mineralogical identification technique that combines scanning electron microscopy (SEM) and backscattered electron (BSE) imaging with energy-dispersive X-ray spectroscopy (EDS) was used to analyze the microstructural and mineralogical changes of the treated shale samples. Results show no apparent changes in the Young's modulus, E, and hardness, H, after treatment with DI water under room temperature (20 degrees C) and atmospheric pressure for 7 d. In contrast, E and H were decreased by 31.2% and 37.5% at elevated temperature (80 degrees C) and pressure (8 MPa), respectively. The addition of 2% KCl into DI water mitigated degradation of the mechanical properties. Quartz-rich shale specimens are the least sensitive to the water-based fracturing fluids, followed by the clay-rich and carbonate-rich shale formations. Based on in situ morphological and mineralogical identification, the primary factors for the mechanical degradation induced by water-based fluids include carbonate dissolution, clay swelling, and pyrite oxidation. Slight increases in the measured E and H and compression of porous clay aggregates were observed after treatment with ScCO2. The major factor contributing to the mechanical changes resulting from the exposure to scCO2 appears to be the competition between swelling caused by adsorption and compression of shale matrix. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-06-01 DOI: 10.1016/j.jrmge.2024.08.009 ISSN: 1674-7755

The Net Ecosystem Carbon Balance (NECB) is a crucial metric for understanding integrated carbon dynamics in Arctic and boreal regions, which are vital to the global carbon cycle. These areas are associated with significant uncertainties and rapid climate change, potentially leading to unpredictable alterations in carbon dynamics. This mini-review examines key components of NECB, including carbon sequestration, methane emissions, lateral carbon transport, herbivore interactions, and disturbances, while integrating insights from recent permafrost region greenhouse gas budget syntheses. We emphasize the need for a holistic approach to quantify the NECB, incorporating all components and their uncertainties. The review highlights recent methodological advances in flux measurements, including improvements in eddy covariance and automatic chamber techniques, as well as progress in modeling approaches and data assimilation. Key research priorities are identified, such as improving the representation of inland waters in process-based models, expanding monitoring networks, and enhancing integration of long-term field observations with modeling approaches. These efforts are essential for accurately quantifying current and future greenhouse gas budgets in rapidly changing northern landscapes, ultimately informing more effective climate change mitigation strategies and ecosystem management practices. The review aligns with the goals of the Arctic Monitoring and Assessment Program (AMAP) and Conservation of Arctic Flora and Fauna (CAFF), providing important insights for policymakers, researchers, and stakeholders working to understand and protect these sensitive ecosystems.

期刊论文 2025-04-07 DOI: 10.3389/fenvs.2025.1544586
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 末页
  • 跳转
当前展示1-10条  共60条,6页