Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more longterm species- and site- specific studies are needed.
2024-03-15 Web of ScienceThe Peel Plateau, NT, Canada, is an area underlain by warm continuous permafrost where changes in soil moisture, snow conditions, and shrub density have increased ground temperatures next to the Dempster Highway. In this study, ground temperatures, snow, and thaw depth were monitored before and after tall shrub removal (2014). A snow survey after tall shrub removal indicated that snow depth decreased by a third and lowered winter ground temperatures when compared with control tall shrub sites. The response of ground temperatures to shrub removal depended on soil type. The site with organic soils had cooler winter temperatures and no apparent change in summer temperatures following shrub removal. At sites with mineral soil, moderate winter ground cooling insufficiently counteracted increases in summer ground heat flux caused by canopy removal. Given the predominance of mineral soil along the Dempster, these observations suggest tall shrub removal is not a viable short-term permafrost management strategy. Additionally, the perpendicular orientation of the Highway to prevailing winter winds stimulates snow drift formation and predisposes the site to warmer permafrost temperatures, altered hydrology, and tall shrub proliferation. Subsequent research should explore the effectiveness of tall shrub removal at sites with colder winter conditions or different snow accumulation patterns.
2024-03-01 Web of ScienceThe increase in deciduous shrub growth in response to climate change throughout the Arctic tundra has uncertain implications, in part due to a lack of field observations. Here we investigate how increasing alder shrub growth in alpine tundra in Interior Alaska corresponds to active layer thickness and soil physical properties. We documented increased alder growth by combining biomass harvests and dendrochronology with the analysis of remotely sensed Normalized Difference Vegetation Index and fire history. Active layer thickness was measured with a tile probe and carbon and nitrogen pools were assessed via elemental analysis. Shallower organic layers under increasing alder growth indicate that nitrogen-rich, deciduous litter inputs may play a role in accelerating decomposition. Despite the observed reduction in organic carbon stocks, active layer thickness was the same under alder and adjacent graminoid tundra, implying deeper thaw of the underlying mineral soil. This study provides further evidence that the widely observed expansion of deciduous shrubs into graminoid tundra will reduce ecosystem carbon stocks and intensify soil-atmosphere thermal coupling. Two consequences of rapid climate warming in the Arctic, where grass-like plants dominate under very cold conditions, are an increased growth and occurrence of shrubs and associated thaw of frozen ground. This exposes organic matter in soils to microbes that can decompose it into carbonaceous greenhouse gases, but some of this carbon loss may be offset by the increased plant growth. Here, we investigate the impacts of greater shrub presence on soil properties at five sites in Alaska. We documented shrub growth by analyzing satellite images, which can help us understand the productivity and/or leaf coverage at each site back in time, and annual growth rings in shrub stems, which show how old the shrubs are and how much they grow each year. We also measured the depth of soil thaw in the field and its organic matter content in a laboratory. Where shrubs were more common, we found a thinner layer of organic matter at the soil surface. Thaw depth remained the same, which may indicate that the presence of shrubs results in deeper thaw of the mineral soil. Our findings support the hypothesis that shrub expansion will further enhance warming-driven increases of greenhouse gas emissions from Arctic landscapes. Trends in dendrochronology and Normalized Difference Vegetation Index reveal increasing growth of alder shrubs in Interior Alaska.More alder cover results in the loss of the soil organic layer and thus soil C and N that is not offset by more shrub biomass.Increasing alder growth may promote permafrost thaw not captured by tile probe active layer thickness monitoring.
2023-12-31 Web of ScienceSeasonal snow cover has an important impact on the difference between soil- and air temperature because of the insulation effect, and is therefore a key parameter in ecosystem models. However, it is still uncertain how specific variations in soil moisture, vegetation composition, and surface air warming, combined with snow dynamics such as compaction affect the difference between soil- and air temperature. Here, we present an analysis of 8 years (2012-2020) of snow dynamics in an Arctic ecosystem manipulation experiment (using snow fences) on Disko Island, West Greenland. We explore the snow insulation effect under different treatments (mesic tundra heath as a dry site and fen area as a wet site, snow addition from snow fences, warming using open top chambers, and shrub removal) on a plot-level scale. The snow fences significantly changed the inter-annual variation in snow depths and -phenology. The maximum annual mean snow depths were 90 cm on the control side and 122 cm on the snow addition side during all study years. Annual mean snow cover duration across 8 years was 234 days on the control side and 239 days on the snow addition side. The difference between soil- and air temperature was significantly higher on the snow addition side than on the control side of the snow fences. Based on a linear mixed-effects model, we conclude that the snow depth was the decisive factor affecting the difference between soil- and air temperature in the snow cover season (p < 0.0001). The change rate of the difference between soil- and air temperature, as a function of snow depth, was slower during the period before maximum snow depth than during the period between the day with maximum snow depth until snow ending day. During the snow-free season, the effects of the open top chambers were stronger than the effects of the shrub removal, and the combination of both contributed to the highest soil temperature in the dry site, but the warming effect of open top chambers was limited and shrub removal warmed soil temperature in the wet site. The warming effects of open top chambers and shrub removal were weakened on the snow addition side, which indicates a lagged effect of snow on soil temperature. This study quantifies important dynamics in soil-air temperature offsets linked to both snow and ecosystem changes mimicking climate change and provides a reference for future surface process simulations.
2023-10-01 Web of ScienceIn boreal regions, wildfires have a major impact on vegetation and permafrost. The ecosystem-protected Xing'an permafrost is sensitive to warming climate and wildfires, particularly on the southern margin of boreal coniferous forest and patchy permafrost zone. However, it remains unclear how fire disturbances are linked with changes in ecosystem composition and soil nutrients in the permafrost zones of Northeast China. Here, 13 years after the fire in the Yile'huli mountain knots, we investigated the parameters like vegetation cover, ground temperatures, active layer thickness, and soil carbon and nitrogen storage at burned and unburned sites of shrub wetlands. The fire resulted in ground warming of 0.1-5.0 degrees C at depths of 1.0-20.0 m and active layer deepening of 0.5 m, and gravimetric soil moisture content increasing of 26%-266%. Fire also increased the number of herbs and tall shrubs. After the fire, graminoids and tall shrubs increased significantly, and the species of herbs increased by five species. However, dwarf shrubs like Ledum palustre and Vaccinium uliginosum were missing from the burned site. A massive loss of total organic carbon (TOC) (248.40 t C/hm2) and nitrogen (TN) (11.87 t N/ hm2) was observed by comparing their storage at burned and unburned sites. These results highlighted that the post-fire responses of vegetation cover and TOC and TN storage were dependent on the thermal regimes of nearsurface permafrost and active layer, recovery of vegetation and organic layer, and soil moisture content. This study can provide an important reference for carbon storage and emission in boreal shrub wetlands under a warming climate and increasing fire disturbances.
2023-02-01 Web of SciencePipeline corridors have been rapidly increasing in length and density because of the ever growing demand for crude oil and natural gas resources in hydrocarbon-rich permafrost regions. Pipeline engineering activities have significant implications for the permafrost environment in cold regions. Along these pipeline corridors, the shrubification in the right-of-way (ROW) has been extensively observed during vegetation recovery. However, the hydrothermal mechanisms of this ROW shrubification have seldom been studied and thus remain poorly understood. This paper reviews more than 112 articles mainly published from 2000 to 2022 and focuses on the hydrothermal mechanisms of shrubification associated with environmental changes induced by the rapidly degrading permafrost from pipeline construction and around the operating pipelines under a warming climate. First, the shrubification from pipeline construction and operation and the ensuing vegetation clearance are featured. Then, key permafrost-related ROW shrubification mechanisms (e.g., from the perspectives of warmer soil, soil moisture, soil type, soil nutrients, topography and landscapes, and snow cover) are discussed. Other key influencing factors on these hydrothermal and other mechanisms are hierarchically documented as well. In the end, future research priorities are identified and proposed. We call for prioritizing more systematic and in-depth investigations and surveys, laboratory testing, long-term field monitoring, and numerical modeling studies of the ROW shrubification along oil and gas pipelines in permafrost regions, such as in boreal and arctic zones, as well as in alpine and high-plateau regions. This review can improve our understanding of shrubification mechanisms under pipeline disturbances and climate changes and help to better manage the ecological environment along pipeline corridors in permafrost regions.
2022-07-01 Web of ScienceThe freeze-thaw process of active layer can alter soil hydrothermal dynamics and plays an important role in the stability of permafrost ecosystem, particularly under the background of permafrost degradation resulting from climate warming. Wetlands in permafrost regions are considered to be symbiotic with permafrost. However, despite being the principal region of high-latitude permafrost in China, research on the freeze-thaw process in wetland in the Great Hing'an Mountains is limited. In this study, soil temperature and moisture data (from September 2018 to August 2020) collected from shrub and forest swamp observational sites in the Great Hing'an Mountains were used to analyze the freeze-thaw process and soil hydrothermal dynamics. The effect of wetland types on the freeze-thaw process and the coupling characteristics of soil temperature and moisture were discussed. The results demonstrated that the thawing process of active layer was unidirectional, while the freezing was bidirectional, and the thawing process took much longer than freezing process. The distribution of temperature and moisture of active layer varied in different stage of freeze-thaw process, yet similar trends were exhibited in different wetland types during the same freeze-thaw stage. The annual average temperature of forest swamp was higher than that of shrub swamp for all soil depths, while the annual average water content of forest swamp was lower than that of shrub swamp. A significant non-linear correlation was observed between moisture and temperature of each soil layer.
2021-10-01 Web of ScienceThe eastern Canadian Subarctic and Arctic are experiencing significant environmental change with widespread implications for the people, plants, and animals living there. In this study, we integrate 10 years of research at the Nakvak Brook watershed in Torngat Mountains National Park of Canada, northern Labrador, to assess the sensitivity of ecological and geomorphological systems to regional climate warming. A time series of the Normalized Difference Vegetation Index indicates that the area has undergone a significant greening trend over the past four decades. Analyses of shrub cross sections suggest that greening has been caused by a combination of rapid establishment and growth that began in the late 1990's and coincided with warmer growing season temperatures. Recent (2010-2015) vegetation change has been subtle and heavily moderated by soil moisture status. Plant canopy height is greater in wet areas and has an insulating effect on ground surface temperatures during the winter, a consequence of snow trapping by shrub canopies. Observations of subsurface conditions indicate that the study site is best characterized as having discontinuous near-surface permafrost. The importance of subsurface conditions for above-ground vegetation depends on the geomorphological context, with plants in wet areas underlain by fine materials being the most likely to be growth-limited by permafrost, thus being potential hot-spots for future change. With the expectation of sustained climate change, loss of adjacent sea ice, and proximity to the forest-tundra ecotone, it is likely that the Torngat Mountains will continue to be an area of rapid environmental change in the coming decades.
2021-08-01 Web of ScienceWarming environmental conditions are often credited with increasing Arctic shrub growth and altering abundance and distribution, yet it is unclear whether tundra shrub expansion will continue into future decades. Water availability may begin to limit Arctic shrub growth if increasing air temperatures create drier soil conditions due to increased evapotranspiration and permafrost-thaw-induced soil drainage. However, few studies have effectively considered how dominant tundra shrub species respond to variations in both temperature and moisture. To better understand the key effects of temperature variation and soil moisture on two dominant circumpolar deciduous shrubs, we studied shrub growth along a natural landscape gradient in West Greenland, which is a region observed to be drying due to ongoing warming. We found that the growth forms of both grey willow (Salix glauca) and dwarf birch (Betula nana) were sensitive to warmer and drier conditions. For both species, increases in air temperature positively correlated with greater shrub volume, with the doubling of canopy volume due to increased woody biomass. Leaf biomass was best predicted by edaphic features including extractable ammonium, which was positively related to soil moisture, and bulk density. Warmer soils tended to be drier, suggesting that ongoing warming in the area could lead to significant water limitation. Our findings suggest that drier soil conditions might be limiting foliar production despite warming temperatures for two circumpolar dominant shrubs,Betula nanaandSalix glauca, which could have wide-ranging, biome-level consequences about ongoing and predicted shrub growth and expansion.
2021-04-01 Web of ScienceThe quantification of vegetation height for the circumpolar Arctic tundra biome is of interest for a wide range of applications, including biomass and habitat studies as well as permafrost modelling in the context of climate change. To date, only indices from multispectral data have been used in these environments to address biomass and vegetation changes over time. The retrieval of vegetation height itself has not been attempted so far over larger areas. Synthetic Aperture Radar (SAR) holds promise for canopy modeling over large extents, but the high variability of near-surface soil moisture during the snow-free season is a major challenge for application of SAR in tundra for such a purpose. We hypothesized that tundra vegetation height can be derived from multispectral indices as well as from C-band SAR data acquired in winter (close to zero liquid water content). To test our hypothesis, we used C-band SAR data from Sentinel-1 and multi-spectral data from Sentinel-2. Results show that vegetation height can be derived with an RMSE of 44 cm from Normalized Difference Vegetation Index (NDVI) and 54 cm from Tasseled Cap Wetness index (TC). Retrieval from C-band SAR shows similar performance, but C-VV is more suitable than C-HH to derive vegetation height (RMSEs of 48 and 56 cm respectively). An exponential relationship with in situ height was evident for all tested parameters (NDVI, TC, C-VV and C-HH) suggesting that the C-band SAR and multi-spectral approaches possess similar capabilities including tundra biomass retrieval. Errors might occur in specific settings as a result of high surface roughness, high photosynthetic activity in wetlands or high snow density. We therefore introduce a method for combined use of Sentinel-1 and Sentinel-2 to address the ambiguities related to Arctic wetlands and barren rockfields. Snow-related deviations occur within tundra fire scars in permafrost areas in the case of C-VV use. The impact decreases with age of the fire scar, following permafrost and vegetation recovery. The evaluation of masked C-VV retrievals across different regions, tundra types and sources (in situ and circumpolar vegetation community classification from satellite data) suggests pan-Arctic applicability to map current conditions for heights up to 160 cm. The presented methodology will allow for new applications and provide advanced insight into changing environmental conditions in the Arctic.
2020-02-01 Web of Science