The seasonal coupling of plant and soil microbial nutrient demands is crucial for efficient ecosystem nutrient cycling and plant production, especially in strongly seasonal alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified by climate change and what the consequences are for nutrient loss and retention in alpine ecosystems remain unclear. Here, we explored how two pervasive climate change factors, reduced snow cover and shrub expansion, interactively modify the seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, which are warming at double the rate of the global average. We found that the combination of reduced snow cover and shrub expansion disrupted the seasonal coupling of plant and soil N-cycling, with pronounced effects in spring (shortly after snow melt) and autumn (at the onset of plant senescence). In combination, both climate change factors decreased plant organic N-uptake by 70% and 82%, soil microbial biomass N by 19% and 38% and increased soil denitrifier abundances by 253% and 136% in spring and autumn, respectively. Shrub expansion also individually modified the seasonality of soil microbial community composition and stoichiometry towards more N-limited conditions and slower nutrient cycling in spring and autumn. In winter, snow removal markedly reduced the fungal:bacterial biomass ratio, soil N pools and shifted bacterial community composition. Taken together, our findings suggest that interactions between climate change factors can disrupt the temporal coupling of plant and soil microbial N-cycling processes in alpine grasslands. This could diminish the capacity of these globally widespread alpine ecosystems to retain N and support plant productivity under future climate change. Seasonal transfers of nutrients between plants and soil microbes are crucial for nutrient retention in alpine ecosystems. Here, we show that two important climate change factors in alpine ecosystems, reduced snow cover and shifts in vegetation, interactively disrupt these seasonal transfers of nutrients. Future climate change could therefore diminish the capacity of globally widespread alpine ecosystems to retain nutrients, with far-reaching consequences for nutrient cycling and plant productivity.image
Vegetation, active-layer soils, and snow cover regulate energy exchange between the atmosphere and permafrost. Therefore, interactions between changes to tundra vegetation and soil thermal regime will fundamentally affect permafrost in a warmer world. We recorded soil temperatures for approximately 1 year in a Siberian Low Arctic landscape with a known history of alder (Alnus) shrub expansion on disturbed microsites in patterned ground. We recorded near-surface soil temperatures and measured physical properties of soils and vegetation on sorted-circle microsites in four stages of shrubland development: (1) tundra lacking tall shrubs; (2) shrub colonization zones; (3) mature shrublands; and (4) paludified, long-established shrublands with thick soil organic layers. Summer soil temperatures declined with increasing shrub cover and soil organic thickness; shrub colonization suppressed cryoturbation, facilitating the development of continuous vegetation and a surface organic mat on circles. Compared to open tundra, mature shrubs cooled soils by up to 9 A degrees C during summer, but warmed soils by greater than 10 A degrees C in winter presumably because they developed highly insulative snowpacks. Paludified shrublands had the coldest summer active layers, but winter soil temperatures were much colder than mature shrublands and were similar to earlier stages. Our results indicate that although tall shrub establishment dramatically warms winter soils within decades, much of this warming is transient at paludification-prone sites because the buildup of wet peat favors cooling in winter and the stature and snow-trapping capacity of shrubs diminish over time. In the ecosystem we studied, shrub expansion has contrasting effects on active-layer temperatures both seasonally and over longer timescales due to successional processes.
Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83 degrees N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C.tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT(emx)), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C.tetragona growth and likely represent insitu summer temperatures. JulT(emx) explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C.tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to summer warming in the High Arctic.
The circumpolar expansion of woody deciduous shrubs in arctic tundra alters key ecosystem properties including carbon balance and hydrology. However, landscapescale patterns and drivers of shrub expansion remain poorly understood, inhibiting accurate incorporation of shrub effects into climate models. Here, we use dendroecology to elucidate the role of soil moisture in modifying the relationship between climate and growth for a dominant deciduous shrub, Salix pulchra, on the North Slope of Alaska, USA. We improve upon previous modeling approaches by using ecological theory to guide model selection for the relationship between climate and shrub growth. Finally, we present novel dendroecology-based estimates of shrub biomass change under a future climate regime, made possible by recently developed shrub allometry models. We find that S. pulchra growth has responded positively to mean June temperature over the past 2.5 decades at both a dry upland tundra site and an adjacent mesic riparian site. For the upland site, including a negative second-order term in the climate-growth model significantly improved explanatory power, matching theoretical predictions of diminishing growth returns to increasing temperature. A first-order linear model fit best at the riparian site, indicating consistent growth increases in response to sustained warming, possibly due to lack of temperature-induced moisture limitation in mesic habitats. These contrasting results indicate that S. pulchra in mesic habitats may respond positively to a wider range of temperature increase than S. pulchra in dry habitats. Lastly, we estimate that a 2 degrees C increase in current mean June temperature will yield a 19% increase in aboveground S. pulchra biomass at the upland site and a 36% increase at the riparian site. Our method of biomass estimation provides an important link toward incorporating dendroecology data into coupled vegetation and climate models.