Light-absorbing impurities (LAIs), such as mineral dust (MD), organic carbon (OC), and black carbon (BC), deposited in snow, can reduce snow albedo and accelerate snowmelt. The Ili Basin, influenced by its unique geography and westerly atmospheric circulation, is a critical region for LAI deposition. However, quantitative assessments on the impact of LAIs on snow in this region remain limited. This study investigated the spatial distribution of LAIs in snow and provided a quantitative evaluation of the effects of MD and BC on snow albedo, radiative forcing, and snowmelt duration through sampling analysis and model simulations. The results revealed that the Kunes River Basin in the eastern Ili Basin exhibited relatively high concentrations of MD. In contrast, the southwestern Tekes River Basin showed relatively high concentrations of OC and BC. Among the impurities, MD plays a dominant role in the reduction of snow albedo and has a greater effect on the absorption of solar radiation by snow than BC, while MD is the most important light-absorbing impurity responsible for the reduction in the number of snow-melting days in the Ili Basin. Under the combined influence of MD and BC, the snowmelt period in the Ili Basin was reduced by 2.19 +/- 1.43 to 7.31 +/- 4.76 days. This study provides an initial understanding of the characteristics of LAIs in snow and their effects on snowmelt within the Ili Basin, offering essential basic data for future research on the influence of LAIs on snowmelt runoff and hydrological processes in this region.
The complex failure behavior of ice under cyclic loading holds significant relevance for understanding the behavior of nearshore sea ice cover, ice shelves, and ice pavements or runways. Experimental evidence demonstrates that the strength of freshwater ice, whether in compression or flexure, can either increase or decrease after cyclic loading. To explore this further, new cyclicmonotonic loading experiments were conducted on snow-sintered ice using four-point bending and unconfined compression tests subjected to various temperatures, monotonic strain rates, and cycling conditions. The results show that the average non-cycled flexural and compressive strength of snow-sintered ice at -10 degrees C is higher than that of water-frozen freshwater ice. The cycled flexural and compressive strength of snow-sintered ice under cyclic loading is highly sensitive to strain rate and accumulated strain. Notably, brittle failure was delayed under cyclic compressive loading at strain rates as high as 10-1 s-1. However, as the number of cycles increases, accumulated strain leads to a decrease in strength. Cyclic loading altered the ductile-tobrittle transition rate and secant modulus, shedding light on the mechanisms behind high-strainrate, low-cycle strengthening effects in ice.
Snow cover is a critical factor controlling plant performance, such as survival, growth, and biomass, and vegetation cover in regions with seasonal snow (e.g., high-latitude and high-elevation regions), due to its influence on the timing and length of the growing season, insulation effect during winter, and biotic and abiotic environmental factors. Therefore, changes in snow cover driven by rising temperatures and shifting precipitation patterns are expected to alter plant performance and vegetation cover. Despite the rapid increase in research on this topic in recent decades, there is still a lack of studies that quantitatively elucidate how plant performance and vegetation cover respond to shifting snow cover across snowy regions. Additionally, no comprehensive study has yet quantitatively examined these responses across regions, ecosystems, and plant functional types. Here, we conducted a meta-analysis synthesizing data from 54 snow cover manipulation studies conducted in both the field and laboratory across snowy regions to detect how plants performance and vegetation cover respond to decreased or increased snow cover. Our results demonstrate that plant survival, aboveground biomass, and belowground biomass exhibited significant decreases in response to decreased snow cover, with rates of survival having the greatest decrease. In response to increased snow cover, plant survival, growth, biomass and vegetation cover tended to increase, except for plant belowground length growth and biomass, which showed significant decreases. Additionally, our quantitative analysis of plant responses to changes in snow cover across regions, ecosystems, and plant functional types revealed that cold regions with thin snow cover, tundra and forest ecosystems, and woody species are particularly vulnerable to snow cover reduction. Overall, this study demonstrates the strong controls that snow cover exerts on plant performance, providing insights into the dynamics of snow-covered ecosystems under changing winter climatic conditions.
In alpine tundra regions, snowmelt plays a crucial role in creating spatial heterogeneity in soil moisture and nutrients across various terrains, influencing vegetation distribution. With climate warming, snowmelt has advanced, lengthening the growing season while also increasing the risk of frost damage to evergreen dwarf shrubs like Rhododendron aureum in alpine tundra regions. To understand these long-term effects, we used remote sensing imagery to analyze nearly four decades (1985-2022) of snowmelt date and the distribution change of R. aureum in Changbai Mountain, East China's only alpine tundra. Results show that snowmelt advanced by 1-3 days/10 years, with faster rates at higher elevations and shady slopes (0.4-0.6 days/10 years more than sunny slopes), while R. aureum increased more on shady slopes under such conditions. Our study demonstrates that these shifts in snowmelt date vary significantly across topographies and reveals how topography and snowmelt changes interact to shape the distribution of evergreen shrubs under climate warming.
The finite element method is used to investigate the ultimate lateral pressure of snowflake pile group in undrained clay in this paper. The parametric analyses are performed to study the effects of the geometry of cross-section, the pile-soil adhesion coefficient, the loading direction, and the normalized pile spacing on the ultimate lateral pressure and the damage mechanism of the snowflake pile. The analysis results show that the ultimate lateral pressure of snowflake pile group decreases with the increasing of the length-thickness ratio of the pile flange and increases with the increasing of the pile-soil adhesion coefficient. When the loading direction is considered, the snowflake pile group with the number of piles of 4 is less affected by the loading direction, it has a larger ultimate lateral pressure. The ultimate lateral pressure of the pile group significantly decreases with the increasing of the number of piles. When the pile spacing is smaller, the decreasing of the ultimate lateral pressure is more obvious with the increasing of the number of piles. On the basis of finite element analysis, the empirical formula of ultimate lateral pressure of snowflake pile group is proposed and calibrated with the finite element results.
We evaluated the morphology, geomorphic settings, and micrometeorological controls of sorted polygons, stripes, lobate patterns, and turf-banked terraces in two summit areas of Daisetsu Mountain, Japan, using orthophoto images and digital surface models generated from unmanned aerial vehicle observations and structure-from-motion techniques and in situ records of air temperature, wind speed/direction and ground temperatures. The sorted polygons on flat terrain are equiform and large (3.5 m in mean length), but on gentle slopes, they are elliptical and small (2.9 m). Sorted stripes and lobate patterns occur on slope steeper than 3.5 degrees-4.5 degrees. The form transition of sorted patterned grounds is considered due to activities of frost heave and thaw settlement, gelifluction, and frost creep, as well as the spatial pattern of soil wetness. In the windward slopes steeper than 3.5 degrees-4.5 degrees, the ground materials move downslope, forming lobate patterns and sorted stripes. On the flat surfaces and leeward slopes, snow accumulation prevents soils from cooling in winter, provides snowmelts to the soils, and thus thickens the seasonal thawing during summer, allowing sorting at greater depths and enlarging the diameters of the frost patterned forms. Snow redistribution and snowmelt infiltration produce locally moist soils, creating favorable environments for plant growth on leeward, that is, eastward sides of microtopography. Soil movements along slopes are dammed on the slope covered with dense vegetation cover where risers of turf-banked terrace are formed. This is the explanation why the turf-banked terraces are typically facing slightly eastward from principal slope direction.
Polychlorinated biphenyls (PCBs) are classified as persistent organic pollutants (POPs) due to their potential threat to both ecosystems and human health. The Tibetan Plateau (TP), characterized by its low temperatures, pristine ecological conditions, and remoteness from anthropogenic influences, serves as the investigation region. This study analyzed water samples from the temperature glacial watershed and employed the risk assessment method established by the United States Environmental Protection Agency (US EPA) to assess both carcinogenic and non-carcinogenic risks of PCBs in five age groups. The total concentrations of PCBs (& sum;3PCBs) varied from 738 to 1914 ng/L, with a mean value of 1058 ng/L, which was comparable to or exceeded levels reported in the surface water around the TP. Notably, the riverine sites located near the villages and towns exhibited the highest pollution levels. Our analyses indicated that glacier melting, long-range atmospheric transport (LRAT), reductive dechlorination processes, and various anthropogenic activities might be potential sources of PCB emission in the Meili Snow Mountains. According to the established national and international water quality standards, as well as toxic equivalency concentrations (TEQs) for dioxin-like PCBs (DL PCBs), the PCB concentrations detected in this study could result in serious biological damage and adverse ecological toxicological effects. However, the PCBs in all samples posed a negligible cancer risk to five age groups, and a non-carcinogenic risk to adults. These findings contribute valuable insights into the risks and sources of PCBs and may serve as a foundational reference for subsequent study of these compounds in the Meili Snow Mountains area of the southeastern TP.
Understanding the thermal regime of road embankments in cold climates during winter is essential for efficient road design and accurate estimation of maintenance frequencies to reduce freeze-induced damage. In response to the challenging climate conditions in northern Sweden, an experimental field setup was designed to assess the thermal impact of culverts and accumulated snow in ditches on the thermal regime of road embankments during a winter season. This study provides detailed information on the experimental setup, highlights potential challenges from installation phase to data acquisition, and addresses measurement errors. Methods to ensure accuracy and obtain reliable data are also presented. Additionally, some of the obtained measurement results are included in this paper. The results show that snow impacts the thermal regime of the embankment from the onset of accumulation in the ditch, when the snow cover is still thin, until it reaches a depth of 65 cm. Beyond this depth, the soil beneath the snow remains almost unfrozen throughout the winter season. Additionally, the temperature distribution measurements within the embankment indicate that freezing progresses faster near the culvert compared to the rest of the embankment. However, once the culvert ends are insulated by snow cover, the frost depth in the soil near the culvert does not increase significantly, while the rest of the road continues to freeze gradually to greater depths throughout the winter season. The measurement results presented in this study provide researchers with a reliable dataset for validating numerical models in related research areas simulating cold-climate conditions. Additionally, these results enhance the understanding of the thermal regime of road embankments in typical cold climates and offer valuable insights for planning road maintenance and construction in such regions. Furthermore, this study provides essential information for researchers aiming to design and optimize experimental measurement setups in similar investigations.
Freeze-thaw-induced N2O pulses could account for nearly half of annual N2O fluxes in cold climates, but their episodic nature, sensitivity to snow cover dynamics, and the challenges of cold-season monitoring complicate their accurate estimation and representation in global models. To address these challenges, we combined in situ automated high-frequency flux measurements with cross-ecoregion soil core incubations to investigate the mechanisms driving freeze-thaw-induced N2O emissions. We found that deepened snow significantly amplified freeze-thaw N2O pulses, with these similar to 50-day episodes contributing over 50% of annual fluxes. Additionally, freeze-thaw-induced N2O pulses exhibited significant spatial heterogeneity, ranging from 3.4 to 1184.1 mu g N m(-2) h(-1) depending on site conditions. Despite significant spatiotemporal variation, our results indicated that 68%-86% of this variation can be explained by shifts in controlling factors: from water-filled pore space (WFPS), which drove anaerobic conditions, to microbial constraints as snow depth increases. Below 43% WFPS, soil moisture was the overwhelmingly dominant driver of emissions; between 43% and 66% WFPS, moisture and microbial attributes (including denitrifying gene abundance, nitrogen enzyme kinetics, and microbial biomass) jointly triggered N2O emissions pulses; above 66% WFPS, microbial attributes, particularly nitrogen enzyme kinetics, prevailed. These findings suggested that maintaining higher soil moisture served as a trigger for activating microbial activity, particularly enhancing nitrogen cycling. Furthermore, we showed that hotspots of freeze-thaw-induced N2O emissions were linked to high root production and microbial activity in cold and humid grasslands. Overall, our study highlighted the hierarchical control of WFPS and microbial processes in driving freeze-thaw-induced N2O emission pulses. The easily measurable WFPS and microbial attributes predictable from plant and soil properties could forecast the magnitude and spatial distribution of N2O emission hot moments under changing climate. Integrating these hot moments, particularly the dynamics of WFPS, into process-based models could refine N2O emission modeling and enhance the accuracy of global N2O budget prediction.
In polar regions, the study of the mechanical behavior of snow under compression is of great significance for the construction of snow runways and snow roads. This paper systematically investigates the microstructural evolution and macroscopic mechanical properties of snow under compression. First, triaxial compression tests were conducted to study the macroscopic mechanical behavior of snow. Subsequently, CT scans were conducted on samples at different loading stages to observe changes in the microstructure of snow. Additionally, a grain segmentation algorithm based on curvature and skeletonization was proposed to analyze the macroscopic mechanical properties of snow in relation to changes in the number and area of ice bonds. The results indicate that the snow loading process can be divided into two stages: the initial loading stage and the linear hardening stage. During the initial loading stage, the microstructure and ice bond area change little, while in the hardening stage, the ice bond area decreases significantly, leading to a lower tangent modulus. Horizontal ice bonds break more easily than vertical ones, causing increased anisotropy during loading. Based on the above analysis, we further investigated the mechanical properties of snow under different densities and loading rates. This study provides a microscopic explanation snow's macroscopic mechanical behavior, enhancing our understanding of its macroscopic mechanics, and contributes to the development of snow constitutive models based on microstructural evolution.