Black carbon (BC) in snow plays an important role to accelerate snow melting. However, current studies mostly focused on BC concentrations, few on their size distributions in snow which affected BC's effect on albedo changes. Here we presented refractory BC (rBC) concentrations and size distributions in snow collected from Chinese Altai Mountains in Central Asia from November 2016 to April 2017. The results revealed that the average rBC concentrations were 5.77 and 2.82 ng g(-1) for the surface snow and sub-surface snow, which were relatively higher in the melting season (April) than that in winter (November-January). The mass median volume-equivalent diameter of rBC size in surface snow was approximately at 120-150 nm, which was typically smaller than that in the atmosphere (about 200 nm for urban atmosphere). However, there existed no specific mass median volume-equivalent diameter of BC size for sub-surface snow in winter. While during the melting season, the median mass size of rBC in sub-surface snow was similar to that in surface snow. Backward trajectories indicated that anthropogenic sourced BC dominated rBC in snow (70%-85%). This study will promote our understanding on BC size distributions in snow, and highlight the possible impact of BC size on climate effect.
Black carbon (BC) in snow plays an important role to accelerate snow melting. However, current studies mostly focused on BC concentrations, few on their size distributions in snow which affected BC's effect on albedo changes. Here we presented refractory BC (rBC) concentrations and size distributions in snow collected from Chinese Altai Mountains in Central Asia from November 2016 to April 2017. The results revealed that the average rBC concentrations were 5.77 and 2.82 ng g(-1) for the surface snow and sub-surface snow, which were relatively higher in the melting season (April) than that in winter (November-January). The mass median volume-equivalent diameter of rBC size in surface snow was approximately at 120-150 nm, which was typically smaller than that in the atmosphere (about 200 nm for urban atmosphere). However, there existed no specific mass median volume-equivalent diameter of BC size for sub-surface snow in winter. While during the melting season, the median mass size of rBC in sub-surface snow was similar to that in surface snow. Backward trajectories indicated that anthropogenic sourced BC dominated rBC in snow (70%-85%). This study will promote our understanding on BC size distributions in snow, and highlight the possible impact of BC size on climate effect.
Season snow cover plays an important role in vegetation growth in alpine regions. In this study, we analyzed the spatial and temporal variations in seasonal snow cover and the start of the growing season (SOS) of alpine grasslands and preliminarily studied the mechanism by which snow cover affects SOS changes by modifying the soil temperature (ST) and soil moisture (SM) in spring. The results showed that significant interannual trends in the SOS, snow end date (SED), snow cover days (SCD), ST, and SM existed over the Tibetan Plateau (TP) in China from 2000 to 2020. The SOS advanced by 2.0 d/10 a over the TP over this period. Moreover, the SOS showed advancing trends in the eastern and central parts of the TP and a delayed trend in the west. The SED and SCD exhibited an advancing trend and a decreasing trend in high-elevation areas, respectively, and the opposite trends in low-elevation areas. The ST showed a decreasing trend in low-elevation areas and an increasing trend in high-elevation areas. The SM tended to increase in most areas. The effects of the seasonal snow cover on the ST and SM indirectly influenced the SOS of alpine grasslands. The delayed SEDs and more SCD observed herein could provide increasingly wet soil conditions optimal for the advancement of the SOS, while less snow and shorter snow seasons could delay the SOS of alpine grasslands on the TP.
Vegetation dynamics are sensitive to climate change and human activities, as vegetation interacts with the hydrosphere, atmosphere, and biosphere. The Yarlung Zangbo River (YZR) basin, with the vulnerable ecological environment, has experienced a series of natural disasters since the new millennium. Therefore, in this study, the vegetation dynamic variations and their associated responses to environmental changes in the YZR basin were investigated based on Normalized Difference Vegetation Index (NDVI) and Global Land Data Assimilation System (GLDAS) data from 2000 to 2016. Results showed that (1) the YZR basin showed an obvious vegetation greening process with a significant increase of the growing season NDVI (Z(c) = 2.31, p < 0.05), which was mainly attributed to the wide greening tendency of the downstream region that accounted for over 50% area of the YZR basin. (2) Regions with significant greening accounted for 25.4% of the basin and were mainly concentrated in the Nyang River and Parlung Tsangpo River sub-basins. On the contrary, the browning regions accounted for <25% of the basin and were mostly distributed in the urbanized cities of the midstream, implying a significant influence of human activities on vegetation greening. (3) The elevation dependency of the vegetation in the YZR basin was significant, showing that the vegetation of the low-altitude regions was better than that of the high-altitude regions. The greening rate exhibited a significantly more complicated relationship with the elevation, which increased with elevated altitude (above 3500 m) and decreased with elevated altitude (below 3500 m). (4) Significantly positive correlations between the growing season NDVI and surface air temperature were detected, which were mainly distributed in the snow-dominated sub-basins, indicating that glaciers and snow melting processes induced by global warming play an important role in vegetation growth. Although basin-wide non-significant negative correlations were found between precipitation and growing season NDVI, positive influences of precipitation on vegetation greening occurred in the arid and semi-arid upstream region. These findings could provide important information for ecological environment protection in the YZR basin and other high mountain regions.
One of the major factors attributed to the accelerated melting of Himalayan glaciers is the snow darkening effect of atmospheric black carbon (BC). The BC is the result of incomplete fossil fuel combustion from sources such as open biomass burning and wood burning cooking stoves. One of the key challenges in determining the darkening effect is the estimation uncertainty of BC deposition (BCD) rate on surface snow cover. Here we analyze the variation of BC dry deposition in seven different estimates based on different dry deposition methods which include different atmospheric forcings (observations and global model outputs) and different spatial resolutions. The seven simulations are used to estimate the uncertainty range of BC dry deposition over the southern Himalayas during pre-monsoon period (March-May) in 2006. Our results show BC dry deposition rates in a wide range of 270-4700 mu g m(-2) during the period. Two global models generate higher BC dry deposition rates due to modeled stronger surface wind and simplification of complicated sub-grid surface conditions in this region. Using ice surface roughness and observation-based meteorological data, we estimate a better range of BC dry deposition rate of 900-1300 mu g m(-2). Under dry and highly polluted conditions, aged snow and sulfate-coated BC are expected to possibly reduce visible albedo by 4.2-5.1%. Our results suggest that for estimating aerosol-induced snow darkening effects of Himalaya snowpacks using global and regional models, realistic physical representation of ice or snow surface roughness and surface wind speed are critical in reducing uncertainties on the estimate of BC deposition over snow surface. (C) 2012 Elsevier Ltd. All rights reserved.