共检索到 2

Study region: The source area of the Yangtze River, a typical catchment in the cryosphere on the Tibet Plateau, was used to develop and validate a distributed hydrothermal coupling model. Study focus: Climate change has caused significant changes in hydrological processes in the cryosphere, and related research has become hot topic. The source area of the Yangtze River (SAYR) is a key catchment for studies of hydrological processes in the cryosphere, which contains widespread glacier, snow, and permafrost. However, the current hydrological modeling of the SAYR rarely depicts the process of glacier/snow and permafrost runoff from the perspective of coupled water and heat transfer, resulting in distortion of simulations of hydrological processes. Therefore, we developed a distributed hydrothermal coupling model, namely WEP-SAYR, based on the WEP-L (Water and energy transfer process in large river basins) model by introducing modules for glacier and snow melt and permafrost freezing and thawing. New hydrological insights for the region: In the WEP-SAYR model, the soil hydrothermal transfer equations were improved, and a freezing point equation for permafrost was introduced. In addition, the glacier and snow meltwater processes were described using the temperature index model. Compared to previously applied models, the WEP-SAYR portrays in more detail glacier/ snow melting, dynamic changes in permafrost water and heat coupling, and runoff dynamics, with physically meaningful and easily accessible model parameters. The model can describe the soil temperature and moisture changes in soil layers at different depths from 0 to 140 cm. Moreover, the model has a good accuracy in simulating the daily/monthly runoff and evaporation. The Nash-Sutcliffe efficiency exceeded 0.75, and the relative error was controlled within +/- 20 %. The results showed that the WEP-SAYR model balances the efficiency of hydrological simulation in large scale catchments and the accurate portrayal of the cryosphere elements, which provides a reference for hydrological analysis of other catchments in the cryosphere.

期刊论文 2024-12-01 DOI: 10.1016/j.ejrh.2024.102057

Observing the isotopic evolution of snow meltwater helps in understanding the process of snow melting but remains a challenge to acquire in the field. In this study, we monitored the melting of two snowpacks near Baishui Glacier No. 1, a typical temperate glacier on the southeastern Tibetan Plateau. We employed a physically based isotope model (PBIM) to calculate the isotopic composition of meltwater draining from natural snowpacks. The initial condition of the PBIM was revised to account for natural conditions, i.e., the initial delta O-18 stratigraphy of snow layers before melting. Simulations revealed that the initial heterogeneity of delta O-18 in snow layers as well as ice-liquid isotopic exchange were responsible for most variations of delta O-18 in snow meltwater, whereas new snow and wind drift could result in sudden changes of the isotopic composition of the meltwater. The fraction of ice involved in the isotopic exchange (f) was the most sensitive parameter for the model output. The initial delta O-18 in the snowpack is mirrored in meltwater in case of smallfand is smoothed with a large exchange fractionf. The other unknown parameter of the PBIM is the dimensionless rate constant of isotopic exchange, which depends on water percolation and initial snow depth. The successful application of the PBIM in the field might not only be useful for understanding snow melting process but might also provide the possibility of predicting the isotopic composition of snow meltwater and improve the accuracy of hydrograph separation.

期刊论文 2023-07-01 DOI: http://dx.doi.org/10.1029/2019WR026423 ISSN: 0043-1397
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页