共检索到 2

The uncertainty of passive microwave retrievals of snowfall is notoriously high where high-frequency surface emissivity is significantly reduced and varies markedly in response to the changes in snowpack physical properties. Using the dense media radiative transfer theory, this article studies the potential effects of terrestrial snow-cover depth, density, and grain size on high-frequency channels 89 and 166 GHz of the radiometer onboard the Global Precipitation Measurement (GPM) core satellite, which are commonly used to capture snowfall scattering signals. Integrating the inference across all feasible grain sizes, ranges of snowpack density and depth are identified over which snowfall scattering signatures can be time-varying and potentially obscured. Using ten years of reanalysis data, the seasonal vulnerability of snowfall retrievals to the changes in snowpack emissivity in the Northern Hemisphere is mapped in a probabilistic sense and connections are made with the uncertainties of the GPM passive microwave snowfall retrievals. It is found that among different snow classes, relatively light Arctic tundra snow in fall, with a density below 260 kg m(-3), and shallow prairie snow during the winter, with a depth of less than 40 cm, can reduce the surface emissivity and obscure the snowfall passive microwave signatures. It is demonstrated that during winter, the highly vulnerable areas are over Kazakhstan and Mongolia with taiga and prairie snow. In the fall, these areas are largely over tundra and taiga snow in north of Russia and the Arctic Archipelagos as well as prairies in Canada and the Great Plains in the United States.

期刊论文 2022-01-01 DOI: 10.1109/TGRS.2022.3184530 ISSN: 0196-2892

At a continental scale, trends in aggregate ablation frequency inform changes in snow cover extent, however the variability and trends in the frequency and magnitude of snow ablation events at regional scales are less well understood. Determining such variability is critical in describing regional hydroclimate, where snow ablation can influence streamflow, soil moisture and groundwater supplies. This study uses a gridded dataset of United States and Canadian snow ablation events derived from 1960 to 2009 surface observations to examine spatial and temporal variations of snow ablation frequency. Here, we show a relatively narrow band of peak ablation frequency seasonally advances and recedes over North America, forced by variations in snow depth and meteorological conditions suitable for ablation. Particularly in more moist regions away from the continent's interior, hydrologically relevant ablation events of at least 10.0 cm occur on an approximately yearly basis. Collectively, ablation events became significantly less frequent with time, where events specifically in the Appalachians and in Great Lakes regions declined by as much as 75% over the 50-year period. Decreases in ablation frequency across the study region are primarily driven by significant decreases in snow cover, inhibiting the potential for ablation to occur due to a lack of sufficiently deep snowpacks. These results point to important snow cover related changes in the hydrologic cycle in a warming climate and highlight specific areas of interest where more localized analysis of ablation trends and forcing mechanisms would be appropriate.

期刊论文 2021-09-01 DOI: 10.1002/joc.7125 ISSN: 0899-8418
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页