共检索到 5

Understanding the impacts of diurnal freeze-thaw cycles (DFTCs) on soil microorganisms and greenhouse gas emissions is crucial for assessing soil carbon and nitrogen cycles in the alpine ecosystems. However, relevant studies in the permafrost regions in the Qinghai-Tibet Plateau (QTP) are still lacking. In this study, we used high-throughput pyrosequencing and static chamber-gas chromatogram to study the changes in topsoil bacteria and fluxes of greenhouse gases, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), during autumn DFTCs in the permafrost regions of the Shule River headwaters on the western part of Qilian Mountains, northeast margin of the QTP. The results showed that the bacterial communities contained a total of 35 phyla, 88 classes, 128 orders, 153 families, 176 genera, and 113 species. The dominant phyla were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes. Two DFTCs led to a trend of increasing bacterial diversity and significant changes in the relative abundance of 17 known bacteria at the family, genus, and species levels. These were predominantly influenced by soil temperature, water content, and salinity. In addition, CO2 flux significantly increased while CH4 flux distinctly decreased, and N2O flux tended to increase after two DFTCs, with soil bacteria being the primary affecting variable. This study can provide a scientific insight into the impact of climate change on biogeochemical cycles of the QTP.

2022-12-01 Web of Science

Boreal forests in permafrost zone store significant quantities of carbon that are readily threatened by increases in fire frequency and temperature due to climate change. Soil carbon is primarily released by microbial decomposition that is sensitive to environmental conditions. Under increasing disturbances of wildfire, there is a pressing need to understand interactions between wildfires and microbial communities, thereby to predict soil carbon dynamics. Using Illumina MiSeq sequencing of bacterial 16S rDNA and GeoChip 5.0K, we compared bacterial communities and their potential functions at surface and near-surface permafrost layers across a chronosequence ( > 100 years) of burned forests in a continuous permafrost zone. Postfire soils in the Yukon and the Northwest Territories, Canada, showed a marked increase in active layer thickness. Our results showed that soil bacterial community compositions and potential functions altered in 3-year postfire forest (Fire(3)) comparing to the unburned forests. The relative abundance of Ktedonobacteria (Chloroflexi) was higher in Fire(3) surface soils, while Alphaproteobacteria and Betaproteobacteria (Proteobacteria) were more abundant in unburned ones. Approximately 37% of the variation in community composition can be explained by abiotic variables, whereas only 2% by biotic variables. Potential functional genes, particularly for carbon degradation and anammox, appeared more frequent in Fire 3 than in unburned soils. Variations in functional gene pools were mainly driven by environmental factors (39%) and bacterial communities (20%; at phylum level). Unexpectedly, wildfire solely altered bacterial communities and their functional potentials of the surface layers, not the near-permafrost layers. Overall, the response of bacterial community compositions and functions to wildfire and the environment provides insights to re-evaluate the role of bacteria in decomposition.

2020-12-01 Web of Science

Understanding the impacts of diurnal freeze-thaw cycles (DFTCs) on soil microorganisms and greenhouse gas emissions is crucial for assessing soil carbon and nitrogen cycles in the alpine ecosystems. However, relevant studies in the permafrost regions in the Qinghai-Tibet Plateau (QTP) are still lacking. In this study, we used high-throughput pyrosequencing and static chamber-gas chromatogram to study the changes in topsoil bacteria and fluxes of greenhouse gases, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), during autumn DFTCs in the permafrost regions of the Shule River headwaters on the western part of Qilian Mountains, northeast margin of the QTP. The results showed that the bacterial communities contained a total of 35 phyla, 88 classes, 128 orders, 153 families, 176 genera, and 113 species. The dominant phyla were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes. Two DFTCs led to a trend of increasing bacterial diversity and significant changes in the relative abundance of 17 known bacteria at the family, genus, and species levels. These were predominantly influenced by soil temperature, water content, and salinity. In addition, CO2 flux significantly increased while CH4 flux distinctly decreased, and N2O flux tended to increase after two DFTCs, with soil bacteria being the primary affecting variable. This study can provide a scientific insight into the impact of climate change on biogeochemical cycles of the QTP.

2020-02

Global climate change is accompanied by changes in the amounts of ice and snow. These changes have both a direct effect on the plant community structure, primary productivity and carbon cycle and an indirect influence on the belowground ecosystem. However, the effects of changes in snowpack on the soil environment and belowground ecological processes, particularly in soil microbial communities are still poorly understood in alpine meadows. We conducted a field study of controlled snowpack in the eastern margin of the Tibetan Plateau, where five treatments were set up, named as S0, S1, S2, S3, and S4 (S1: the amount of a natural snowpack; S2, S3, and S4 were twofold, threefold, and fourfold of Sl, respectively; and SO: completely removed snow). Soil physicochemical properties, soil community structure and diversity measured by 16S rRNA gene amplicons were studied. The results indicated that 1) as snowpack increased, the average soil temperature decreased, but soil moisture and soil compaction increased; 2) soil chemical properties (pH, available nitrogen, available potassium, available phosphorus, total nitrogen, total potassium, total phosphorus and total soil organic carbon) all changed as snowpack changed; and 3) increasing snowpack led to a decrease in the relative abundance of Acidobacteria, but Bacteroidetes and Actinobacteria did not decline in response to increasing snowpack. In summary, these results showed that soil bacterial communities are sensitive to changes in snowpack in alpine meadows.

2018-05-01 Web of Science

Alterations in snow cover driven by climate change may impact ecosystem functioning, including biogeochemistry and soil (microbial) processes. We elucidated the effects of snow cover manipulation (SCM) on above-and belowground processes in a temperate peatland. In a Swiss mountain-peatland we manipulated snow cover (addition, removal and control), and assessed the effects on Andromeda polifolia root enzyme activity, soil microbial community structure, and leaf tissue and soil biogeochemistry. Reduced snow cover produced warmer soils in our experiment while increased snow cover kept soil temperatures close-to-freezing. SCM had a major influence on the microbial community, and prolonged 'close-to-freezing' temperatures caused a shift in microbial communities toward fungal dominance. Soil temperature largely explained soil microbial structure, while other descriptors such as root enzyme activity and pore-water chemistry interacted less with the soil microbial communities. We envisage that SCM-driven changes in the microbial community composition could lead to substantial changes in trophic fluxes and associated ecosystem processes. Hence, we need to improve our understanding on the impact of frost and freeze-thaw cycles on the microbial food web and its implications for peatland ecosystem processes in a changing climate; in particular for the fate of the sequestered carbon.

2013-08-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页