Exposed surfaces following glacial retreat are ideal field laboratories for studying primary vegetation succession. Many related studies based on ground sampling methods have been performed worldwide in proglacial zones, but studies on species diversity and vegetation succession using aerial photography have been rare. In this study, we investigated soil organic carbon (SOC), total nitrogen (TN), plant species diversity, and fractional vegetation cover (FVC) along a chronosequence within the foreland of Urumqi Glacier No. 1 by combining field sampling and aerial photography. We then analysed soil development and vegetation succession along distance (distance from glacier terminus) and time (terrain age) gradients as well as the relationships between topographic and environmental variables (aspect, slope, SOC, and TN), distance, time, and species distributions. The results indicated that: (1) plant diversity and FVC showed increasing trends with increases in distance and terrain age, whereas soil nutrient content varied nonlinearly; (2) Silene gonosperma, Leontopodium leontopodioides, and Saussurea gnaphalodes were the dominant species in the early, transient, and later succession stages, respectively. Cancrinia chrysocephala occurred in all stages and had a high abundance in the early and later stages; and (3) the relationships of FVC with soil nutrient content were nonlinear. Moreover, distance and site age played important roles in species distribution. These findings confirm that distance and terrain age positively affect vegetation succession. The increase in FVC facilitated the accumulation of soil nutrition, but this trend was affected by the rapid growth of plants. Caryophyllaceae and Asteraceae were the most common plants during the succession stages, and the former tended to colonise in the early succession stage. We conclude that the UAV-based method exhibits a high application potential for assessing vegetation dynamics in glacier forelands, which has a significance for long-term and repeated monitoring on the process of vegetation colonisation and succession in deglariated areas. (C) 2021 Elsevier B.V. All rights reserved.
In permafrost regions, forest fires actively affect physical and chemical properties of soils. Many studies have been conducted on the effects of forest fires on physical and chemical properties of topsoil, while the research on the fire-induced changes in carbon and other nutrients of soils has received much less attention, particularly that of soils in the active layer and near-surface permafrost. Here, using soil samples from two representative areas (Mangui and Alongshan), we investigated the effects of fires on soil nutrients of larch forest soils in the discontinuous permafrost zone in the northern Da Xing'anling (Hinggan) Mountains, Northeast China. The results showed that soil pH increased with fire severity due to the burning of soil organic matter by more severe fires and leaching of base elements in the residual ash into the soil, and; forest fires resulted in a weakly acidic post-fire soil environment. Soil total organic carbon, total nitrogen, and total phosphorus declined with increasing fire severity. A severe burn led to a substantial reduction of soil carbon and nitrogen, which were not recovered seven years after fire. However, there was no substantial change in the C/N ratio. For the two chosen areas, soil C/N ratios decreased with depth. In the first post-fire year, total potassium content increased and were similar at the sites affected by fires of different severity in the area burned seven years ago. There was no significant change in available phosphorus and available potassium. These changes were notable in the active layer and/or organic layers, but not so in the near-surface permafrost layer. Our results suggest that, in permafrost regions, forest fires have important effects on the distribution of soil carbon and other nutrients. This study on the feedback mechanisms between forest fires and nutrients in discontinuous permafrost regions in the northern Da Xing'anling Mountains is of importance for understanding the boreal carbon pool and cycling.
The freezing-thawing cycle is a basic feature of a frozen soil ecosystem, and it affects the growth of alpine vegetation both directly and indirectly. As the climate changes, the freezing-thawing mode, along with its impact on frozen soil ecosystems, also changes. In this research, the freezing-thawing cycle of the Nagqu River Basin in the Qinghai-Tibet Plateau was studied. Vegetation growth characteristics and microbial abundance were analyzed under different freezing-thawing modes. The direct and indirect effects of the freezing-thawing cycle mode on alpine vegetation in the Nagqu River Basin are presented, and the changing trends and hazards of the freezing-thawing cycle mode due to climate change are discussed. The results highlight two major findings. First, the freezing-thawing cycle in the Nagqu River Basin has a high-frequency mode (HFM) and a low-frequency mode (LFM). With the influence of climate change, the LFM is gradually shifting to the HFM. Second, the alpine vegetation biomass in the HFM is lower than that in the LFM. Frequent freezing-thawing cycles reduce root cell activity and can even lead to root cell death. On the other hand, frequent freezing-thawing cycles increase microbial (Bradyrhizobium, Mesorhizobium, and Pseudomonas) death, weaken symbiotic nitrogen fixation and the disease resistance of vegetation, accelerate soil nutrient loss, reduce the soil water holding capacity and soil moisture, and hinder root growth. This study provides a complete response mechanism of alpine vegetation to the freezing-thawing cycle frequency while providing a theoretical basis for studying the change direction and impact on the frozen soil ecosystem due to climate change.