Addressing saline soil issues while ensuring agricultural productivity requires innovative technologies. This study investigated the impact of adding an innovative remediation preparation, specifically leguminous compost containing 50 g (LCT+CS-1), 100 g (LCT+CS-2), or 150 g of corn silk kg-1 (LCT+CS-3), to saline soil (ECe = 11.05 dS m-1) on soil characteristics and fenugreek plant performance during the 2022/2023 and 2023/2024 seasons. All organic supplementations significantly improved soil organic matter content, nutrient levels, and enzyme activities (urease, acid and alkaline phosphatase, and catalase) while reducing soil pH and Na+ content compared to the control. These results reflected decreased Na+ content, oxidative stress indicators (hydrogen peroxide and superoxide radicals), and oxidative damage (leaf electrolyte leakage and malondialdehyde levels) in fenugreek plants. On the other hand, leaf integrity (chlorophyll and carotenoid contents, membrane stability index, and relative water content) and nutrient contents improved. Furthermore, K+/Na+ ratio, osmoregulatory compounds (soluble sugars and proline), antioxidant levels (glutathione, ascorbate, phenols, and flavonoids), and antioxidant activity increased notably. Thus, notable increases in plant growth and yield traits and seed quality (trigonelline, nicotinic acid, total phenols, and flavonoids) were achieved. LCT+CS-2 was the most effective treatment for saline soil (ECe = 11.05 dS m-1), alleviating salinity effects and improving fenugreek growth, yield, and seed quality traits.
Microplastics (MPs) have distributed in agricultural soil. However, the effects of MPs on the growth of tobacco remain unclear. In this study, a pot experiment was conducted to evaluate the effects of linear low-density polyethylene (LLDPE) MPs at four different concentrations (0 mgkg-1 as control, 10 mgkg-1, 100 mgkg-1, and 1000 mgkg-1) on soil enzyme activity, physiological characteristics, and tobacco growth. The results showed that compared with the control, the treatments of 100 and 1000 mgkg-1 significantly inhibited the activities of soil catalase (S-CAT) and soil sucrase (S-SC). Compared with the control, the 1000 mgkg-1 treatment significantly altered root morphology, inhibited tobacco growth, and water content, resulting in a significant decrease in chlorophyll a content, catalase (CAT) and superoxide dismutase (SOD) activities in tobacco leaves, thereby incited a significant increase in malondialdehyde (MDA) content and peroxidase (POD) activity. Interestingly, the 10 mgkg-1 treatment stimulated the activity of soil urease (S-UE) and root biomass. Overall, this study highlights the significant impact of MPs on soil enzymes, oxidative damage to tobacco, and inhibition of tobacco growth and development. It emphasizes the environmental risks of MPs pollution in soil, particularly for commercial crops like tobacco, and provides insights for controlling MPs abundance in the environment. Further research is needed to investigate the underlying mechanisms of MPs' effects on metabolism and genes in the soil-tobacco-microbial system.
Plant species composition influences belowground ecosystem function. However, there are few data on the interactive effects of plant diversity and soil function. We surveyed plant species diversity, and determined soil carbon (C), nitrogen (N) fractions and enzyme activity in five peatlands with different vegetation-types. We also investigated the interactions between plant species diversity and richness, and soil biochemical properties. We found a close relationship between plant species diversity and total carbon (TC) in both surface (0-15 cm) and subsoil (15-30 cm) layers. Plant diversity and richness positively correlated with soil dissolved organic carbon (DOC), NH4+-N in both soil layers and subsoil moisture and total nitrogen (TN), as well as topsoil pH. Plant species diversity and richness were also positively correlated with subsoil moisture, pH, protease, acid phosphatase activity and topsoil urease activity. Soil beta-glucosidase, invertase, urease, protease, and acid phosphatase activity positively correlated with soil TC, TN, DOC, available N and soil moisture. Our findings demonstrate that plant community diversity is linked with soil C and N turnover through soil enzyme activity. These results will improve our ability to more fully understand the linkages between aboveground and belowground components in peatland ecosystems.
In addition to warming temperatures, Arctic ecosystems are responding to climate change with earlier snowmelt and soil thaw. Earlier snowmelt has been examined infrequently in field experiments, and we lack a comprehensive look at belowground responses of the soil biogeochemical system that includes plant roots, decomposers, and soil nutrients. We experimentally advanced the timing of snowmelt in factorial combination with an open-top chamber warming treatment over a 3-year period and evaluated the responses of decomposers and nutrient cycling processes. We tested two alternative hypotheses: (a) Early snowmelt and warming advance the timing of root growth and nutrient uptake, altering the timing of microbial and invertebrate activity and key nutrient cycling events; and (b) loss of insulating snow cover damages plants, leading to reductions in root growth and altered biological activity. During the 3years of our study (2010-2012), we advanced snowmelt by 4, 15, and 10days, respectively. Despite advancing aboveground plant phenology, particularly in the year with the warmest early-season temperatures (2012), belowground effects were primarily seen only on the first sampling date of the season or restricted to particular years or soil type. Overall, consistent and substantial responses to early snowmelt were not observed, counter to both of our hypotheses. The data on soil physical conditions, as well interannual comparisons of our results, suggest that this limited response was because of the earlier date of snowmelt that did not coincide with substantially warmer air and soil temperatures as they might in response to a natural climate event. We conclude that the interaction of snowmelt timing with soil temperatures is important to how the ecosystem will respond, but that 1- to 2-week changes in timing of snowmelt alone are not enough to drive season-long changes in soil microbial and nutrient cycling processes.