共检索到 4

Climate change has exposed desert ecosystems to frequent extreme disturbances, including wet-dry cycles and freeze-thaw events, which accelerate desertification on a global scale. The limited nutrient availability characteristic of these ecosystems may constrain microbial survival and growth, making them more vulnerable to environmental perturbations and stressors. However, how nutrient availability modulates the stability of soil ecological communities and functions in desert ecosystems remains poorly understood. In this study, we examined how nutrient addition, applied either before or after disturbances, affects the resistance of bacterial communities and multifunctionality to drought and freeze events in desert ecosystems. Our findings revealed that freeze-thaw events, rather than drought, significantly reduced bacterial diversity, with all disturbances altering the community structure. Pre-disturbance nutrient addition notably improved the resistance of soil bacterial diversity and community composition to disturbances, which played a critical role in maintaining multifunctionality in desert ecosystems. This enhanced bacterial resistance was strongly associated with increased bacterial network complexity and the enrichment of disturbance-tolerant taxa. Our results highlight the pivotal role of nutrient availability in stabilising soil bacterial communities and multifunctionality under extreme climatic conditions in desert ecosystems. These findings offer valuable insights and practical strategies for the ecological protection and management of desertification.

期刊论文 2025-03-01 DOI: 10.1111/1462-2920.70081 ISSN: 1462-2912

Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking. This study examines (i) how overgrazing impacts multiple soil indicators, functions, and overall soil health (SH) and (ii) whether natural early forest growth post-grazing exclusion enhances critical soil functions for ecosystem restoration. We compared preserved dense forests, longterm overgrazed pastures (over 30 years), and young fenced-off open forests (three years old) along a longitudinal transect in the Caatinga biome: 36 degrees W (Sao Bento do Una), 37 degrees W (Sertania), and 40 degrees W (Araripina). Soil samples from the 0-20 cm layer were analyzed for thirteen physical, chemical, and biological indicators for a structured SH assessment, calculating index scores based on soil functions. Forest-to-pasture transition and subsequent overgrazing consistently compacted the soils and decreased nitrogen, carbon (C), microbial biomass C, and glomalin protein, thus degrading the soil's physical, chemical, and biological functions. Regionally, this conversion depleted 14.7 Mg C ha(-1) and reduced overall SH scores by 18%, severely impacting biological functions ( e.g.,-43% for sustaining biological activity). No significant differences in functions or SH were found between grazed pastures and open forests. SH scores and C stocks were highly interrelated (r > 0.5; p < 0.001), suggesting that C losses and SH deterioration were closely aligned. We conclude that overgrazing degrades soil multifunctionality and health across the Caatinga biome, with biological functions most severely damaged and legacies obstructing soil recovery for up to three years of grazing exclusion. Future SH studies should include open forest chronosequences with older ages and active restoration practices ( e.g., planting trees or green manure) to enhance Caatinga's ecological restoration knowledge and efforts.

期刊论文 2025-02-01 DOI: 10.1016/j.jenvman.2024.124022 ISSN: 0301-4797

Introduction: Fusarium-induced root rot of Carya cathayensis (C. cathayensis) is a typical soil-borne disease that has severely damaged the Carya cathayensis industry in China. Understanding the interaction among soil microbial communities, soil characteristics, and pathogenic bacteria is very important for the ecological prevention and control of Carya cathayensis root rot. Methods: We used Miseq Illumina high-throughput sequencing technology to study the microbial community in the rhizosphere soil of healthy and diseased C. cathayensis, quantified the abundance of bacteria, fungi, and pathogenic fungi, and combined these with soil chemistry and enzyme activity indicators to analyze the characteristics of healthy and diseased rhizosphere soils. Results: We found that the pH, soil organic carbon(SOC), available nitrogen (AN), available phosphorus (AP), available potassium (AK),N-acetyl-beta-D-glucosaminidase (NAG) beta-glucosidase (BG), fungal gene copy number, bacterial community diversity and network complexity of the diseased soil were significantly lower (p < 0.05), while Fusarium graminearum copies number levels increased (p < 0.05). Additionally, the study found that healthy soils were enriched with beneficial bacteria such as Subgroup_7 (0.08%), MND1 (0.29%), SWB02 (0.08%), and Bradyrhizobium (0.09%), as well as potential pathogen-suppressing fungi such as Mortierella (0.13%), Preussia (0.03%), and Humicol (0.37%), were found to be associated with the growth and development of C. cathayensis. Discussion: In summary, this research comprehensively reveals the differences in environmental and biological factors between healthy and diseased soils, as well as their correlations. It provides a theoretical basis for optimal soil environmental regulation and the construction of healthy microbial communities. This foundation facilitates the development of multifaceted strategies for the prevention and control of C. cathayensis root rot.

期刊论文 2024-11-11 DOI: 10.3389/fmicb.2024.1448675

Global climate change has altered soil freeze-thaw (FT) patterns but less is known about the responses of soil microbial diversity, soil multifunctionality, and their relationship to FT events. Daxing'an Mountains in China, located in high-latitude permafrost ecosystems, are one of the most sensitive areas to climate change and FT patterns. Here, simulated FT conditions were used to determine the impact of FT events on soil microbial diversity and multifunctionality as well as to elucidate the relationships between bacterial and fungal diversity and multifunctionality. Community composition, alpha-diversity index, and co-occurrence network complexity of fungi significantly changed during FT events, whereas the same parameters did not exhibit significant alterations for bacteria. Soil fungal communities were more sensitive to FT events than soil bacterial communities. FT events significantly affected soil multifunctionality. A random forest analysis showed that the fungal diversity index was the main predictor of soil multifunctionality. Moreover, changes in soil abiotic factors also affected the relationship between soil microbial diversity and multifunctionality. Soil multifunctionality was also constrained by fungal community network complexity. Structural equation model showed that the FT amplitude and FT cycles exerted different impact paths on soil multifunctionality. The effect of FT cycles on soil multifunctionality (0.289) was greater than that of FT amplitude (0.080). As global climate change is expected to accelerate in the future, extension of the FT period in high-altitude and high-latitude regions may have a severe impact on soil function compared to extreme low temperatures caused by the presence of thin snow cover.

期刊论文 2022-07-01 DOI: 10.1016/j.catena.2022.106241 ISSN: 0341-8162
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页