共检索到 12

Invasive weeds cause substantial ecological, economical, and social problems, and are currently being controlled by herbicide applications. However, how herbicides affect other ecological interactions of invasive weeds, including their symbiosis with arbuscular mycorrhizal fungi (AMF), remains poorly understood. In this study, we therefore conducted field investigation to understand how the herbicide glyphosate affects the AMF diversity in the rhizosphere of the invasive weed Solidago canadensis. We also performed a greenhouse experiment to study if AMF can contribute to herbicide resistance. The results showed that the AMF colonization rate was significantly higher in S. canadensis when exposed to glyphosate in the field or in greenhouse settings. AMF diversity was also found to be higher in the rhizosphere soil after glyphosate application in the field. AMF colonization in greenhouse experiments also positively correlated with plant growth and reduced amounts of damaged leaves and the plant's content of the stress markers flavonol and anthocyanin. Chlorophyll content was significantly enhanced by AMF colonization, regardless of glyphosate application. These results indicate that herbicide can promote AMF colonization and diversity, and that AMF can enhance the herbicide resistance of S. canadensis. These findings suggest that herbicide application may promote the spread of S. canadensis through enhanced microbial interactions, posing new eco-environmental risks.

期刊论文 2025-08-01 DOI: 10.1016/j.apsoil.2025.106203 ISSN: 0929-1393

Multiple pesticides often coexist in soil, potentially leading to interactions among their components, these may detrimentally impact soil organisms. This study assessed the potential risks posed by simultaneous exposure to atrazine (ATR) and phoxim (PHO) on enzyme and transcription levels in earthworms (Eisenia fetida). The results revealed that ATR exhibited higher acute toxicity towards E. fetida compared to PHO, and their combined exposure resulted in a synergistic acute effect. Furthermore, low concentration combined exposure significantly stimulated catalase (CAT), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) activities, which lead to more severe oxidative damage. Elevated expression levels of translationally controlled tumor protein (tctp) and calreticulin (crt) genes were observed in most exposed groups compared to the control. The synergistic effects of ATR and PHO on earthworms observed in this study may pose ecological risks to the soil ecosystem; thus, more attention should be paid to the joint effects of different pesticides.

期刊论文 2025-06-01 DOI: 10.1016/j.etap.2025.104713 ISSN: 1382-6689

The soil environment has been considered capable of storing toxic substances without serious consequences for the inhabitants since plants are able to bioaccumulate pollutants without compromising their survival. The application of chemicals to increase soil productivity and the dumping of waste have worsened soil quality. Recently, following a greater awareness of the importance of monitoring the damage deriving from the consumption of contaminated crops for humans and of the protection of biodiversity, studies aimed at identifying the effects of soil contamination on terrestrial animals have increased considerably. Studies using field lizards as model organisms fit into this scenario; this research has shed light on the uptake, accumulation, and toxicity of soil pollutants on reptiles. This review summarizes data collected on lizards of the Podarcis genus, a group of resilient wild species capable of living in both pristine and anthropized areas; the data reveal that many of the effects recorded in lizard tissues at the molecular, biochemical, and histological levels are independent of the chemical composition of the contaminants and are mostly linked to the type of cellular response. Overall, these studies confirm Podarcis lizards as a good model system in ecotoxicological and cytotoxicological research, providing an accurate description of the effects of pollutants, clarifying the defense mechanisms activated in relation to different exposure routes and, finally, providing predictive information on the risks faced by other animals. Since the effects recorded in lizards have often also been observed in mammals, it can be concluded that the results obtained from studies on these animals can be translated to other terrestrial vertebrates, including mammals.

期刊论文 2025-02-01 DOI: 10.3390/jox15010021 ISSN: 2039-4705

To comprehensively understand the toxic effects and ecological risks of microplastics on major economic tree species, a pot experiment was conducted using polylactic acid (mPLA) microplastics as the test object to explore the effects of different concentrations (0.1%, 0.5%, 1%, 5%, 10%, w/w, mass fraction) of microplastics on the growth and physiological characteristics of mulberry trees. The study results showed that, compared with the control group, the biomass, total chlorophyll content, and net photosynthetic rate of mulberry trees in the mPLA treatment group were significantly reduced under high concentration (10%) treatment; the activities of SOD and CAT and the MDA content were significantly increased by 50.00%, 47.83%, and 60.87%, respectively, at a 10% concentration. The results indicate that the toxic effects of microplastic addition on mulberry trees are related to the type and concentration of microplastics. High concentrations of mPLA can damage the photosynthetic system of plants, affecting photosynthesis, causing oxidative damage and thus inhibiting the growth of mulberry plants.

期刊论文 2025-01-01 DOI: 10.15666/aeer/2301_13651376 ISSN: 1589-1623

The escalating global issue of soil pollution by heavy metals, particularly incinerated municipal solid waste fly ash (IMSWFA), necessitates effective remediation strategies. The prevailing approach for safely disposing and utilization of IMSWFA involves high-temperature sintering. In this work, we propose a cost-effective method to produce ceramsites by utilizing IMSWFA, municipal sludge (MS), contaminated soil (CS), and iron tail slag (ITS). After conducting a comprehensive analysis and comparison of outcomes obtained from orthogonal experiments and single-factor experiments, it was determined that the optimal preparation conditions for achieving desirable results are preheating at a temperature of 400 degrees C for 15 min followed by sintering at a temperature of 1150 degrees C for 10 min. The optimal ratio of raw materials for ceramsites is 15 % IMSWFA, 15 % MS, 58 % CS, and 12 % ITS. The ceramsites, prepared in accordance with the specified process and raw material ratio, exhibit remarkable properties including robust stability, minimal water absorption, reduced weight, and elevated cylindrical compressive strength. The ceramsites demonstrate an exceptionally high heavy metal loss ratio ranging from 91 % to 100 %, while exhibiting significantly lower leaching quantities of these metals compared to the raw materials. Additionally, aging tests of ceramsites were performed under UV light and acid/alkaline etching to simulate the real-world environment. This work can be utilized to investigate the long-term environmental impact of ceramsites derived from municipal solid waste (MSW), thereby making a valuable contribution to the advancement of solid waste management technology.

期刊论文 2024-12-15 DOI: 10.1016/j.wasman.2024.10.012 ISSN: 0956-053X

The study explores the aftermath of a wastewater reservoir failure in a phosphate fertilizer industry, resulting in the release of acidic water containing phosphorus and sulfate compounds into the Ashalim stream's Nature Reserve in the Judean desert, which affected the soil surface biological crusts (biocrusts) layer. The study aims to examine contamination effects on biocrusts over 3 years at two research sites along the stream, compare effects between contaminated sites, assess rehabilitation treatments, and examine their impact on soil characteristics. Hypotheses suggest significant damage to biocrusts due to acidic water flow, requiring human intervention for accelerated restoration. The results indicate adverse effects on biocrust properties, risking its key role in the desert ecosystem. The biocrust layer covering the stream's ground surface suffered significant physical, chemical, and biological damage due to exposure to industrial process effluents. However, soil enrichment treatments, including biocrust components and organic material, show promising effects on biocrust recovery.

期刊论文 2024-08-01 DOI: 10.1007/s10661-024-12865-y ISSN: 0167-6369

Microplastics (MPs), found in many places around the world, are thought to be more detrimental than other forms of plastics. At present, physical, chemical, and biological methods are being used to break down MPs. Compared with physical and chemical methods, biodegradation methods have been extensively studied by scholars because of their advantages of greenness and sustainability. There have been numerous reports in recent years summarizing the microorganisms capable of degrading MPs. However, there is a noticeable absence of a systematic summary on the technology for breeding strains that can degrade MPs. This paper summarizes the strain-breeding technology of MP-degrading strains for the first time in a systematic way, which provides a new idea for the breeding of efficient MP-degrading strains. Meanwhile, potential techniques for breeding bacteria that can degrade MPs are proposed, providing a new direction for selecting and breeding MP-degrading bacteria in the future. In addition, this paper reviews the sources and pollution status of soil MPs, discusses the current challenges related to the biodegradation of MPs, and emphasizes the safety of MP biodegradation.

期刊论文 2024-06-01 DOI: 10.3390/microorganisms12061147

alpha -Tocopherol's (Vitamin E) antioxidant and anti-inflammatory properties may help reduce the progression of fibrosis in kidney by limiting tissue damage and inflammation induced by arsenic. Knowledge of the mechanisms of action of natural medicinal substances in arsenic toxicity will be improved by the analysis of the ameliorative effects of alpha -tocopherol. The goal of the current investigation was to determine whether Vitamin E can protect rats from nephrotoxicity caused by sodium arsenite (NaAsO2). Twenty-five Wistar rats were split into five groups viz: Group I with distilled water as control; Group II -IV with 8.4 (Low dose)/12.3 (Moderate dose)/16.4 mg/kg NaAsO2 (High dose); and Group V as in Gr. IV + 50 mg/kg alpha -Tocopherol. Both the doses were administered orally to rats for 60 days. alpha -tocopherol decreased the concentration of serum parameters like urea nitrogen (UN) and creatinine (CRT) whereas increased the concentration of albumin (ALB), acid phosphatase (ACP), alkaline phosphatase (ALP) and succinic dehydrogenase (SDH) ( P <0.05). In comparison to control group, the transcript levels of p53 were significantly higher in the LDG, MDG, and HDG rats, respectively, by -0.7 fold, -0.4 fold, and -0.5 fold. Similar to this, p21 transcript levels were higher in LDG, MDG and HDG groups than in those from the control group by -0.2 fold, -0.4 fold and -0.6 fold, respectively. Additionally, as compared to rats in the control group, the levels of p27 transcripts were decreased by -0.5 fold, -0.5 fold, and -0.4 fold in the LDG, MDG, and HDG rat populations, respectively. Co -administration of alpha -tocopherol with NaAsO2 showed decreased mRNA expression of p53 and p21 followed by increased mRNA expression of p27. In this investigation, it was discovered that alpha -tocopherol had a protective effect against renal damage brought on by NaAsO2.

期刊论文 2024-06-01 DOI: 10.56042/ijeb.v62i06.3751 ISSN: 0019-5189

A traditional grid model for soil sampling may suffer from poor efficiency and low accuracy. With a nonferrous metal processing plant as the study area, a three-dimensional kriging interpolation model was built based on this plant's preliminary investigation data for arsenic (As), and a detailed survey sampling programme was proposed. The sampling density at the pollution interval of the surface soil was estimated by the coefficient of variation method, and the sampling depth was determined by the pollution interval of the vertical prediction results. The results showed that the encrypted soil sampling distribution optimisation method obtains greater pointing accuracy with fewer points. The sampling accuracy was 87.62% after optimising the depth of pointing. Moreover, this approach could save 66.13% of the sampling costs and 56.93% of the testing costs compared to a full deployment programme. This study provides a new and cost-effective method for predicting the extent of contamination exceedance at a site and provides valuable information to guide post-remediation strategies for contaminated sites.

期刊论文 2024-03-01 DOI: 10.1007/s10661-024-12460-1 ISSN: 0167-6369

In soil, chromium can be found in two main valence forms: hexavalent Cr (VI) and trivalent Cr (III). In terms of toxicity, the most toxic form to plants is Cr (VI). In the present study, we investigated the impact of Cr (VI) (0, 25, 50, 75 and 100 ppm) on growth, physiological parameters and the translocation kinetics of Cr (VI) in the faba bean plant (Vicia faba L.). The results showed that Cr (VI) negatively affects growth parameters (- 15% to - 72%), tolerance index (- 34.05% to - 64.7%), and reduce the total chlorophyll content (until 40%) compared to control plants without Cr (VI). However, the increase of Cr (VI) concentration in the soil, stimulated the synthesis of sugars (max 6,97 mg/g FM), proteins (max 62.89 mu g/mg FM) and proline (max 98.57 mu g/mg FM) and increased the electrolyte leakage (+ 2.5% to + 9%) compared to control plants. Cr (VI) concentrations in shoots and roots increased significantly for all Cr (VI) doses applied. The translocation factor results showed that the majority of the Cr (VI) absorbed by the plant is stored in the roots, with a very low bioaccumulation factor, which does not exceed 0.4. The findings show that Cr (VI) negatively affects the morpho-physiological parameters of Vicia faba, the bioaccumulation of organic solutes and the low bioaccumulation factor of Cr (VI) can be considered as a strategy of tolerance to Cr(V).

期刊论文 2024-03-01 DOI: 10.1007/s00128-024-03864-3 ISSN: 0007-4861
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共12条,2页