Global warming leads to the melting of permafrost, affects changes in soil microbial community structures and related functions, and contributes to the soil carbon cycle in permafrost areas. Located at the southern edge of Eurasia's permafrost region, the Greater Khingan Mountains are very sensitive to climate change. Therefore, by analyzing the bacterial community structure, diversity characteristics, and driving factors of soil profiles (active surface layer, active deep layer, transition layer, and permafrost layer) in this discontinuous permafrost region, this research provides support for the study of the carbon cycling process in permafrost regions. The results show that the microbial diversity (Shannon index (4.81)) was the highest at 0-20 cm, and the Shannon index of the surface soil of the active layer was significantly higher than that of the other soil layers. Acidobacteria and Proteobacteria were the dominant bacteria in the active layer soil of the permafrost area, and Chloroflexi, Actinobacteria, and Firmicutes were the dominant bacteria in the permafrost layer. Chloroflexi made the greatest contribution to the bacterial community in the permafrost soil, and Bacteroidota made the greatest contribution to the bacterial community in the active surface soil. The structure, richness, and diversity of the soil bacterial community significantly differed between the active layer and the permafrost layer. The number of bacterial species was the highest in the active layer surface soil and the active layer bottom soil. The difference in the structure of the bacterial community in the permafrost soil was mainly caused by changes in electrical conductivity and soil-water content, while that in the active layer soil was mainly affected by pH and soil nutrient indices. Soil temperature, NO3--N, and pH had significant effects on the structure of the bacterial community. The active layer and permafrost soils were susceptible to environmental information processing and genetic information processing. Infectious disease: the number of bacterial species was significantly higher in the surface and permafrost layers than in the other layers of the soil. In conclusion, changes in the microbial community structure in soil profiles in discontinuous permafrost areas sensitive to climate change are the key to soil carbon cycle research.
2024-08-01 Web of ScienceIntroduction: Permafrost and seasonally frozen soil are widely distributed on the Qinghai-Tibetan Plateau, and the freezing-thawing cycle can lead to frequent phase changes in soil water, which can have important impacts on ecosystems.Methods: To understand the process of soil freezing-thawing and to lay the foundation for grassland ecosystems to cope with complex climate change, this study analyzed and investigated the hydrothermal data of Xainza Station on the Northern Tibet from November 2019 to October 2021.Results and Discussion: The results showed that the fluctuation of soil temperature showed a cyclical variation similar to a sine (cosine) curve; the deep soil temperature change was not as drastic as that of the shallow soil, and the shallow soil had the largest monthly mean temperature in September and the smallest monthly mean temperature in January. The soil water content curve was U-shaped; with increased soil depth, the maximum and minimum values of soil water content had a certain lag compared to that of the shallow soil. The daily freezing-thawing of the soil lasted 179 and 198 days and the freezing-thawing process can be roughly divided into the initial freezing period (November), the stable freezing period (December-early February), the early ablation period (mid-February to March), and the later ablation period (March-end of April), except for the latter period when the average temperature of the soil increased with the increase in depth. The trend of water content change with depth at all stages of freezing-thawing was consistent, and negative soil temperature was one of the key factors affecting soil moisture. This study is important for further understanding of hydrothermal coupling and the mechanism of the soil freezing-thawing process.
2024-06-20 Web of Science