Researchers have tried hard to study the toxic effects of single pollutants like certain antibiotics and nanoplastic particles on plants. But we still know little about how these pollutants interact when they're together in the environment, and what combined toxic effects they have on plants. This study assessed the toxic effects of polystyrene nanoplastics (PS-NPs) and ciprofloxacin (CIP), both individually and in combination, on soybean (Glycine max L.) seedlings by various concentration gradients treatments of PS-NPs (0, 10, 100 mg/L) and CIP (0, 10 mg/L). The results indicated that high concentrations of PS-NPs significantly impeded soybean seedling growth, as evidenced by reductions in root length, plant height, and leaf area. CIP predominantly affected the physiological functions of leaves, resulting in a decrease in chlorophyll content. The combined exposure demonstrated synergistic effects, further intensifying the adverse impacts on the growth and physiological functions of soybean seedlings. Metabolomic analyses indicated that single and combined exposures markedly altered the metabolite expression profiles in soybean leaves, particularly related to amino acid and antioxidant defense metabolic pathways. These results indicate the comprehensive effects of NPs with antibiotics on plants and provide novel insights into toxic mechanisms.
Soybean urease-induced calcium carbonate precipitation (SICP) is an innovative and eco-friendly approach with demonstrated potential for mitigating soil liquefaction. However, the specific impacts of the concentrations of soybean urease and salt solutions require further elucidation. The research examines how the two compositions influence calcium carbonate formation. Dynamic characteristics of one-cycle SICP-treated clean and silty sand were analyzed based on cyclic triaxial tests. It was revealed that SICP-treated specimens of both liquefied sand and silty sand exhibit reduced accumulation of excess pore pressure and diminished strain growth under cyclic loading, thereby delaying liquefaction failure. Although higher concentrations of both soybean urease and salt solution can enhance liquefaction resistance, salt solution concentration has a more pronounced effect on improving liquefaction resistance due to the more production of calcium carbonate. Scanning electron microscopy observations confirmed the presence of calcium carbonate crystals at the interfaces between sand particles and between sand and fine particles. These crystals effectively bond the loose sand and fine particles into a cohesive matrix, reinforcing soil structure. A direct linear correlation was established between the liquefaction resistance improvement and precipitated calcium carbonate content. Notably, the one-cycle SICP treatment method adopted in this study demonstrates a better biocementation effect compared to cement mortar or multi-cycle MICP-treated sand under the same content of cementitious materials. These findings provide valuable insights for optimizing SICP treatments, aiming to reduce the risk of soil liquefaction in potential field applications.
The hilly and mountainous regions of China are characterized by unique features such as small plots of land, steep slopes, fragmented fields, and high soil viscosity, which result in a decline in the efficiency of conventional agricultural machinery, or even render its use impractical. To address this issue, this study developed a micro universal chassis adapted to hilly terrains. First, a four-wheel-drive multifunctional electric micro chassis was designed, considering the terrain characteristics of hilly regions and the agronomic requirements of maizesoybean strip intercropping. Second, the kinematics of the chassis were modeled and analyzed to determine optimal posture control strategies, and a fuzzy RBF neural network-based PID control algorithm was designed to enable dynamic adjustment of the chassis. Then, extensive testing was conducted on the prototype chassis, including straight-line driving tests, steering tests, climbing tests, and passability tests, which demonstrated its excellent operational performance. The straight-line driving tests showed an average lateral deviation of 30 mm and a maximum deviation of 60 mm, while the in-situ steering tests recorded a deviation of 20 mm. Finally, the prototype was applied to field weeding operations, where results indicated that its performance, including travel speed, weeding efficiency, and seedling damage rate, significantly outperformed existing traditional models. The findings suggest that the designed multifunctional micro universal chassis is highly effective for use in hilly and mountainous regions, with superior performance particularly under intercropping systems.
Magnesia carbonation can be adopted as a soil solidification technology for geotechnical engineering. Recent studies have shown that urea decomposition under the catalyzation of ureolytic bacteria can provide a carbon source for magnesia carbonation. Although many related studies have been reported, the mechanical behaviour of the magnesia solidified soil, especially its durability and long-term performance, still require further deep investigations. Besides, the use of plant urease instead of bacteria for magnesia carbonation is also of research interest and requires further studies. In this study, we used crude soybean urease for the catalyzation of urea decomposition in order to provide carbon source for magnesia carbonation (soybean urease intensified magnesia carbonation, SIMC). The mechanical behaviour and durability of SIMC solidified soil under drying-wetting and soaking conditions in acid rain solution were investigated. For SIMC samples, the addition of urea and urease as internal carbon sources led to a much higher strength compared with those without them. The optimum urea concentration was 2 mol/L, and higher concentrations could have negative impact on the strength. As for magnesia, the highest strengths were obtained when the addition was 8 %. During the drying-wetting cycles and soaking tests with acid rain water, there was a generally moderate decreasing trend in strength for the SIMC samples with more drying-wetting cycles or soaking durations. However, the strength reduction ratio, which was defined as the long-term strength in acid environment to that in neutral environment, was much higher compared to the PC samples, implying a much stronger resistance to acid rain water. The mineralogical analysis revealed that hydrated magnesium carbonates were the major effective cementing materials.
Soybean, a globally significant and versatile crop, serves as a vital source of both oil and protein. However, environmental factors such as soil salinization pose substantial challenges to its cultivation, adversely affecting both yield and quality. Enhancing the salt tolerance of soybeans can mitigate yield losses and promote the development of the soybean industry. Members of the plant-specific transcription factor family NAC play crucial roles in plant adaptation to abiotic stress conditions. In this study, we screened the soybean GmNAC family genes potentially involved in the salt stress response and identified 18 GmNAC genes that may function during the early stages of salt stress. Among these, the GmNAC035 gene exhibited a rapid increase in expression within one hour of salt treatment, with its expression being induced by abscisic acid (ABA) and methyl jasmonate (MeJA), suggesting its significant role in the soybean salt stress response. We further elucidated the role of GmNAC035 in soybean salt tolerance. GmNAC035, a nuclear-localized transcriptional activator, enhances salt tolerance when overexpressed in Arabidopsis, reducing oxidative damage and boosting the expression of stress-responsive genes. It achieves this by regulating key stress response pathways, including the SOS pathway, calcium signaling, and ABA signaling. These findings highlight the potential of GmNAC035 as a genetic engineering target to improve crop salt tolerance.
This study aimed to evaluate the effects of potassium (K) and Bradyrhizobium japonicum applications on physiological and microbial parameters in soybean plants under salt stress. The study included treatments of control, potassium (2.2 g K2SO4), bacteria (B), and their combinations (K + B), along with versions exposed to 100 mM NaCl salt stress. Key parameters such as leaf water content (RWC), chlorophyll (SPAD, Chlo a/b), oxidative stress indicators (H2O2 and MDA), proline, protein, antioxidant enzyme activities (APX, POD, and CAT), microbial biomass carbon (MBC), and CO2 release from soil were measured. Salt stress reduced RWC in plants by 15%, while H2O2 and MDA levels increased by 25% and 30%, respectively. However, potassium and bacterial applications improved plant resilience against stress by increasing proline levels by 20%, reducing protein loss by 18%, and enhancing antioxidant enzyme activities to mitigate oxidative damage. In soil microbial activities, MBC increased by up to 161%, and CO2 release increased by up to 27.7% with K + B application. Under salt stress, MBC and CO2 release were restored by 122% and 50.8%, respectively, demonstrating the positive effects of potassium and bacterial inoculation on microbial activity. These findings suggest that potassium and Bradyrhizobium japonicum applications could be considered effective strategies for enhancing plant tolerance and soil health under salt stress conditions.
Soil salinization has emerged as a major factor negatively affecting soil quality and plant productivity. Proline, functioning as an osmotic regulator, has been proposed as an effective strategy for enhancing plant tolerance to salt stress. This study aimed to investigate the effects of exogenous proline on salt tolerance in soybeans. A hydroponic experiment was conducted with different salt treatments (without NaCl, -NaCl; with 100 mM NaCl, +NaCl) and with or without 150 mM proline (+Pro, -Pro). The results showed that proline application alleviated salt stress-induced reductions in plant growth, photosynthetic parameters, and chlorophyll content while aiding recovery from leaf chlorosis. Proline treatment improved ion homeostasis by reducing Na+ levels and increasing K+ and Ca2+ contents in the leaves. Salt stress increased malondialdehyde (MDA) and reactive oxygen species (ROS) levels, along with leaf peroxidase (POD) and catalase (CAT) activities, while decreasing superoxide dismutase (SOD) activity. Moreover, salt stress obviously enhanced proline accumulation, accompanied by increases in glutamate (Glu), glutamate-1-semialdehyde (GSA), and pyrroline-5-carboxylate (P5C) content, as well as the activities of pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) in the glutamate pathway, while reducing proline dehydrogenase (ProDH) activity. Exogenous proline treatment further elevated proline content and increased key substances and enzyme activities in both the glutamate (Glu and P5C content, P5CS and P5CR activity) and ornithine (Orn content and OAT activity) pathways while also reducing ProDH activity. Collectively, our results revealed that exogenous proline contributed to an attenuation of salt stress in soybeans by regulating both the glutamate and ornithine pathways to stimulate endogenous proline accumulation, mediate Na+/K+ homeostasis, and inhibit oxidative damage.
Herein, CuO and ZnO nanoparticles (NPs) were biogenically synthesized using plant (Artemisia vulgaris) extracts. The biogenic NPs were subsequently evaluated in vitro for antifungal activity (200 mg/L) against Fusarium virguliforme (FV; the cause of soybean sudden death), and for crop protection (200-500 mg/L) in FV-infested soybean. ZnONPs exhibited 3.8-, 2.5-, and 4.9-fold greater in vitro antifungal activity, compared to Zn or Cu acetate salt, the Artemisia extract, and a commercial fungicide (Medalion Fludioxon), respectively. The corresponding CuONP values were 1.2-, 1.0-, and 2.2-fold, respectively. Scanning electron microscopy (SEM) revealed significant morpho-anatomical damage to fungal mycelia and conidia. NP-treated FV lost their hyphal turgidity and uniformity and appeared structurally compromised. ZnONP caused shriveled and broken mycelia lacking conidia, while CuONP caused collapsed mycelia with shriveled and disfigured conidia. In soybean, 200 mg/L of both NPs enhanced growth by 13%, compared to diseased controls, in both soil and foliar exposures. Leaf SEM showed fungal colonization of different infection sites, including the glandular trichome, palisade parenchyma, and vasculature. Foliar application of ZnONP resulted in the deposition of particulate ZnO on the leaf surface and stomatal interiors, likely leading to particle and ion entry via several pathways, including ion diffusion across the cuticle/stomata. SEM also suggested that ZnO/CuO NPs trigger structural reinforcement and anatomical defense responses in both leaves and roots against fungal infection. Collectively, these findings provide important insights into novel and effective mechanisms of crop protection against fungal pathogens by plant-engineered metal oxide nanoparticles, thereby contributing to the sustainability of nano-enabled agriculture.
Cadmium (Cd) is a toxic, non-essential heavy metal, with significant stress to plants such as soybean (Glycine max). High Cd concentration in the soil inhibits various stages of soybean growth, including seed germination, vegetative growth, and the reproduction stage. Phosphate, a vital macronutrient, has been shown to alleviate Cd-induced stress; however, the molecular mechanisms remain poorly understood. This study aimed to explore the interactive effects of Cd and phosphate on soybeans at the physiological, transcriptomic, and metabolic levels using a multi-omics approach. Experiments were conducted where soybean plants were treated with different concentrations of Cd and phosphate. The results indicated that Cd stress significantly reduced plant height, photosynthetic rate, and transpiration rate, while phosphorus application mitigated these effects, reducing Cd absorption in both roots and shoots. Furthermore, antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were significantly enhanced by phosphate under Cd stress, which scavenged reactive oxygen species (ROS) generated by cadmium, thereby protecting cells from oxidative stress damage. Transcriptome and metabolome analyses revealed substantial changes in gene expression and metabolite profiles in response to Cd and phosphate treatments. Notably, phosphorus treatment induced the up-regulation of genes involved in stress response, root development, and metal transport, while altering metabolic pathways related to phenolic acids, flavonoids, and lipids. This research provided new insights into the molecular mechanism by which phosphorus enhanced the activity of antioxidant enzymes, thereby improving the plant's antioxidant defense capacity and reducing the toxic effects of cadmium in soybeans, offering potential strategies for enhancing crop resilience against heavy metal contamination.
Global warming-induced abiotic stresses, such as waterlogging, significantly threaten crop yields. Increased rainfall intensity in recent years has exacerbated waterlogging severity, especially in lowlands and heavy soils. Its intensity is projected to increase by 14-35% in the future, posing a serious risk to crop production and the achievement of sustainable development goals. Soybean, a major global commercial crop cultivated across diverse climates, is highly sensitive to waterlogging, with yield losses of up to 83% due to impaired root morphology and growth. Therefore, understanding the stage-specific response of soybean to varying intensities of waterlogging under different climate regimes is crucial to mitigate the impact of climate change. This study evaluated two climate regimes (Summer: C-S and Rainy: C-R), four growth stages (S-15: 15 days after emergence, S-30, S-45, and S-60), and five waterlogging durations (D-2: 2 days, D-4, D-6, D-8, and D-10) using a randomized complete block design (RCBD) with seven replications in 2023. Results revealed that waterlogging adversely affected soybean root morphology (reducing root volume by 8.6% and dry weight by 5.3%) and growth (decreasing leaf area by similar to 6% and dry matter by 48.2%), with more severe effects observed during the summer compared to the rainy season. Among growth stages, soybean was most sensitive at S-45, showing greater reductions in growth attributes and seed yield (similar to 64.9%) across climate regimes. Prolonged waterlogging (2-10 days) had a pronounced negative impact on root and shoot parameters, resulting in yield reductions of 25.4-47.8% during summer and 47.0-68.2% during the rainy season, compared to the control. Yield stability was highest at D-2 (yield stability index: 0.53) with minimal yield reductions, while D-10 caused the greatest yield loss (similar to 58%). Interestingly, the summer climate regime, characterized by bright sunshine hours and higher temperatures, supported better post-stress recovery, leading to higher grain yields. In conclusion, waterlogging during C-R x S-45 x D-10 caused the most substantial yield reduction (similar to 91%).